RAMAN-GEOTHERMOMETER FOR CARBONACEOUS CHONDRITES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Samples of the Murchison meteorite (carbonaceous chondrite, type CM2) were kept isothermally in a specially designed device at temperatures of 200, 500 and 800°C. After the samples cooled down in an inert helium atmosphere, Raman scattering spectra were taken. An increase in the intensity of the G- and D-lines of graphite was detected depending on the degree of heating. It is shown that using such a characteristic parameter of these lines as the area ratio, SD/SG, it is possible to define a geothermometer to determine the maximum temperature of thermal metamorphism of the parent bodies of carbonaceous chondrites. A comparison with the known data for carbonaceous chondrite Allende (CM3), which has experienced a significant thermal metamorphism, is carried out.

About the authors

S. А. Voropaev

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: voropaev@geokhi.ru
Russia, Moscow

A. P. Krivenkо

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russia, Moscow

N. V. Dushenkо

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russia, Moscow

References

  1. Маров М.Я., Ипатов С.И. Процессы миграции в Солнечной системе и их роль в эволюции Земли и планет // УФН. 2023. Т. 193. С. 2–32.
  2. Tuinstra F., Koenig J.L. Raman spectrum of graphite // J. Chemical Physics. 1970. V. 53. P. 1126–1130.
  3. Wopenka B., Pasteris J.D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy // American Mineralogist. 1993. V. 78. P. 533–557.
  4. Воропаев С.А., Душенко Н.В., Федулов В.С., Сенин В.Г. Особенности дегазации азота хондрита Dhajala (H3.8) // Доклады РАН. Физика, технические науки. 2023. Т. 509. № 2. С. 20–26.
  5. Voropaev S., Boettger U., Pavlov S., Hanke F., Petukhov D. Raman spectra of the Markovka chondrite (H4) // J. Raman spectroscopy. 2021. P. 1–9. https://doi.org/10.1002/jrs.6147
  6. Botta O., Bada J. Extraterrestrial organic compounds in meteorites // Surveys in Geophysics. 2002. V. 23. P. 411–467.
  7. Zolensky M., Barrett R., and Browning L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites // Geochim. Cosmochim. Acta. 1993. V. 57. P. 3123–3148.
  8. Krot A.N., Scott E.R.D., Zolensky M.E. Mineralogic and chemical variations among CV3 chondrites and their components: Nebular and asteroidal processing // Meteoritics. 1995. V. 30. P. 748–775.
  9. Busemann H., Alexander C., Nittler L. Characterization of insoluble organic matter in primitive meteorites by micro Raman spectroscopy // Meteoritics & Planetary Science. 2007. V. 42 (7/8). P. 1387–1416.
  10. Schultz P.H. et al. The LCROSS Cratering Experiment // Science. 2010. V. 330. P. 468–472.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (134KB)
3.

Download (233KB)
4.

Download (20KB)
5.

Download (64KB)

Copyright (c) 2023 С.А. Воропаев, А.П. Кривенко, Н.В. Душенко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies