A new representation of the thermodynamic potential of lithium niobate
- Authors: Shirokov V.B1, Kalinchuk V.V1
-
Affiliations:
- Southern Scientific Center of the Russian Academy of Sciences
- Issue: Vol 525, No 1 (2025)
- Pages: 70-79
- Section: ФИЗИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/375785
- DOI: https://doi.org/10.7868/S3034508125060089
- ID: 375785
Cite item
Abstract
Within the framework of the phenomenological theory new thermodynamic models of lithium niobate with Landau potentials of the fourth and sixth degrees have been constructed. The coefficients of these potentials have been calculated using known experimental values of the material constants of the linear equations of the piezoelectric effect, as well as electro-optical and acousto-optical constants obtained at room temperature. When constructing the potentials, the temperature behavior of the permittivity, spontaneous polarization and deformation has been taken into account. Both potentials allow calculating the full set of piezoelectric, electro-optical and acousto-optical constants of lithium niobate in a wide range of temperature changes. Computational experiments have been carried out to calculate the deformation and spontaneous polarization in the range of 300–1400 K. The results of calculations obtained using the sixth-degree potential have shown good agreement with the results of experimental studies.
About the authors
V. B Shirokov
Southern Scientific Center of the Russian Academy of Sciences
Author for correspondence.
Email: vkalin415@mail.ru
Rostov-on-Don, Russian Federation
V. V Kalinchuk
Southern Scientific Center of the Russian Academy of Sciences
Email: vkalin415@mail.ru
Corresponding Member of the RAS Rostov-on-Don, Russian Federation
References
- Weis R.S., Gaylord T.K. Lithium niobate: Summary of physical properties and crystal structure // Appl. Phys. A. August 1985. V. 37. № 4. Р. 191–203.
- Kuzminov, Yu.S. Electrooptical and Nonlinear-Optical Crystal of Lithium Niobate. Moscow: Nauka, 1987, 264 pp.
- Wong K.K. Properties of Lithium Niobate / Published by: INSPEC, The Institution of Electrical Engineers, London, United Kingdom, 2002. 417 p.
- Morgan, D. Surface Acoustic Wave Signal Processing Devices. Moscow: Radio i Svyaz, 1990, 416 pp.
- Chen G., Li N., Ng J.D., Lin H.-L., Zhou Y., Fu Y.H., Ting Lee L.Y., Yu Y., Liu A.-Q., Danner A.J. Advances in lithium niobate photonics: development status and perspectives // Advanced photonics. 2022. V. 4. Iss. 3. 034003(1–43). doi: 10.1117/1.AP.4.3.034003
- Nassau K., Levinstein H.J., Loiacono G.M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals // J. Phys. Chem. Solids. 1966. V. 27. № 6–7. Р. 989–996. doi: 10.1016/0022-3697(66)90071-0
- Srzolenskii G.A., Krainik N.N., Khuchua N.P., Zhdanova V.V., Mylnikova I.E. The Curie Temperature of LiNbO3 // Phys. Stat. Sol. 1966. V. 13. P. 309–314. doi: 10.1002/PSSB.19660130202
- Warner A.W., Onoe M., Coquin G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) // The Journal of the Acoustical Society of America. 1967. V. 42. № 6. Р. 1223–1231. doi: 10.1121/1.1910709
- Smith R.T., Welsh F.S. Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate // J. Appl. Phys. 1971. V. 42. Р. 2219. doi: 10.1063/1.1660528
- Tomeno I., Matsumura S. Elastic and dielectric-properties of LiNbO3 // J. Physical Society of Japan. 1987. V. 56. № 1. Р. 163–177. doi: 10.1143/JPSJ.56.163
- Xue D., Betzler K., Hesse H., Lammers D. Temperature dependence of the dielectric response of lithium niobate // J. Physics and Chemistry of Solids. 2001. V. 62. P. 973–976. doi: 10.1016/S0022-3697(00)00273-0
- Ogi H., Kawasaki Y., Hirao M., Ledbetter H. Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients // J. Applied Physics. 2002. V. 92. Р. 2451. doi: 10.1063/1.1497702
- Shaldin, Yu.V., Matyjasik, S., Rabadanov, M.Kh., Gabrielyan, V.T., and Grunsky, O.S. Pyroelectric Properties of Real LiNbO3 Single Crystals. Doklady RAN, 2007, Vol. 417, No. 3, p. 328–331.
- Shirokov, V.B., Kalinchuk, V.V., Shakhovoy, R.A., and Yuzyuk, Yu.I. On the Problem of Determining Elastic Constants of Thin Ferroelectric Films. Doklady RAN, 2015, Vol. 463, p. 655–660.
- Shirokov, V.B., Kalinchuk, V.V., and Timoshenko, P.E. Properties of Thin Films of Barium–Strontium Titanate Solid Solutions under Forced Piezoelectric Effect. Doklady RAN, 2018, Vol. 479, p. 620–625. doi: 10.7868/S0869565218120046
- Yamada T. Electromechanical Properties of Oxygen Octahedra Ferroelectric Crystals // J. Appl. Phys. 1972. V. 43. P. 328. doi: 10.1063/1.1661117
- Scrymgeour D.A., Gopalan V., Itagi A., Saxena A., Swart P.J. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate // Physical Review B. 2005. V. 71. Р. 184110. doi: 10.1103/PhysRevB.71.184110
- Shiozaki Y., Shiozaki M.T. Powder neutron diffraction study of LiNbO3 // J. Physics and Chemistry of Solids. 1963. V. 25. P. 1057–1061. doi: 10.1016/0022-3697(63)90012-X
- Shirokov V.B. Basis of Invariants for Multiferroic // Crystallography Reports. 2011. V. 56. No. 3. P. 475–476. doi: 10.1134/S106377451103031X
- Yariv, A. and Yeh, P. Optical Waves in Crystals. Moscow: Mir, 1987, 616 pp.
- Kutin, E.I., Lorman, V.L., and Pavlov, S.V. Methods of Singularity Theory in the Phenomenology of Phase Transitions. Uspekhi Fizicheskikh Nauk, 1991, Vol. 161, p. 109–147. doi: 10.1070/PU1991v034n06ABEH002385
- Shostak R.I., Yevdokimov S.V., Yatsenko A.V. An Analysis of the Temperature Dependence of the Spontaneous Polarization of LiNbO3 Crystals // Crystallography Reports. 2009. V. 54. No. 3. P. 492–495. doi: 10.1134/S1063774509030195
- Lehnen H., Boysen H., Frey F. A neutron powder investigation of the high-temperature structure and phase transition in stoichiometric LiNbO3 // Zeitschrift für Kristallographie. 1997. V. 212. P. 712–719.
- Salje E.K.H, Gallardo M.C., Jimenez J., Romero F.J., Cerro J. del. The cubic–tetragonal phase transition in strontium titanate: Еxcess specific heat measurements and evidence for a near-tricritical, mean field type transition mechanism // J. Phys.: Condens. Matter. 1998. V. 10. P. 5535–5543.
Supplementary files


