Adaptive optical system for atmospheric turbulence compensation with Rayleigh laser guide star
- Authors: Garanin S.G.1, Blagonravov V.K.1, Bogachev V.A.1, Vereshchagin A.A.1, Volkov M.V.1,2, Glukhov A.A.1, Guk D.E.1, Klimov A.N.1, Koltygin M.O.1, Kudryashov A.V.3, Kuzin R.S.1, Kulikov S.M.1, Mineev I.V.1, Nemtseva A.V.1,4, Nikitin A.N.3, Rukosuev A.L.3, Starikov F.A.1,2
-
Affiliations:
- Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
- Sarov Institute of Physics and Technology – Branch of the National Research Nuclear University “Moscow Engineering Physics Institute”
- Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
- Lomonosov Moscow State University, Faculty of Physics, Branch of Lomonosov Moscow State University in Sarov
- Issue: Vol 523, No 1 (2025)
- Pages: 44-53
- Section: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://journals.rcsi.science/2686-7400/article/view/309482
- DOI: https://doi.org/10.7868/S3034508125040081
- EDN: https://elibrary.ru/qkvuog
- ID: 309482
Cite item
Abstract
We demonstrate an increase in the resolving power of a telescope with the aperture of 1 m when observing astronomical objects on flat terrain using a fast-operating adaptive optical system. This system includes a Rayleigh laser guide star formed at the distance of 3–6 km. In the experiments, the image size (FWHM) of natural stars has been reduced by more than an order of magnitude with an increase in the radiation energy fraction in the diffraction angle to 11% at the Fried parameter ~6 cm and the bandwidth of the turbulent distortions ~50 Hz. These results are in qualitative agreement with the calculation results. It has been demonstrated that adaptive phase correction significantly increases the image details of a non-isoplanar moving object, such as the International Space Station, enabling its reliable identification.
About the authors
S. G. Garanin
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
V. K. Blagonravov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
V. A. Bogachev
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
A. A. Vereshchagin
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
M. V. Volkov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics; Sarov Institute of Physics and Technology – Branch of the National Research Nuclear University “Moscow Engineering Physics Institute”
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia; Sarov, Nizhny Novgorod Region, Russia
A. A. Glukhov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
D. E. Guk
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
A. N. Klimov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
M. O. Koltygin
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
A. V. Kudryashov
Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
Email: fastarikov@vniief.ru
Moscow, Russia
R. S. Kuzin
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
S. M. Kulikov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
I. V. Mineev
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia
A. V. Nemtseva
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics; Lomonosov Moscow State University, Faculty of Physics, Branch of Lomonosov Moscow State University in Sarov
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia; Sarov, Nizhny Novgorod Region, Russia
A. N. Nikitin
Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
Email: fastarikov@vniief.ru
Moscow, Russia
A. L. Rukosuev
Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences
Email: fastarikov@vniief.ru
Moscow, Russia
F. A. Starikov
Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics; Sarov Institute of Physics and Technology – Branch of the National Research Nuclear University “Moscow Engineering Physics Institute”
Author for correspondence.
Email: fastarikov@vniief.ru
Sarov, Nizhny Novgorod Region, Russia; Sarov, Nizhny Novgorod Region, Russia
References
- Гаранин С.Г., Зыков Л.И., Климов А.Н., Куликов С.М., Смышляев С.П., Степанов В.В., Сюндюков А.Ю. Дневное наблюдение звезд слабой яркости (7m–8m) с равнинной местности // Оптический журнал. 2017. Т. 84. № 12. С. 30–37.
- Гаранин С.Г., Жуков И.В., Зыков Л.И., Климов А.Н., Копалкин А.В., Опёнов С.Л., Смышляев С.П., Сюндюков А.Ю. Дневное наблюдение звезд слабой яркости (8m–10m) и космических объектов видеокамерой с суммированием изображений // Оптический журнал. 2020. Т. 87. № 7. С. 49–59. https://doi.org/1017586/1023-5086-2020-87-07-49-59
- Линник В.П. О принципиальной возможности уменьшения влияния атмосферы на изображение звезды // Оптика и спектроскопия. 1957. Т. 25. №4. С. 401–402.
- Foy R., Labeyrie A. Feasibility of adaptive telescope with laser probe // Astron. Astrophys. 1985. V. 152. № 2. P. L29–L31.
- Primmerman C.A., Murphy D.V., Page D.A., Zollars B.G., Barclay H.T. Compensation of atmospheric optical distortion using a synthetic beacon // Letters to Nature. 1991. V. 353. P. 141–143.
- Zollars B.G. Atmospheric-Turbulence Compensation Experiments Using Synthetic Beacons // The Lincoln Laboratory Journal. 1992. V. 5. № 1. P. 67–91.
- Fugate R. Laser beacon adaptive optics // Optics & Photonics News. 1993. V. 4. № 6. P. 14–19.
- Fugate R.Q., Ellerbroek B.L., Higgins C.H., Jelonek M.P., Lange W.J., Slavin A.C., Wild W.J., Winker D.M., Wynia J.M., Spinhirne J.M., Boeke B.R., Ruane R.E., Moroney J.F., Oliker M.D., Swindle D.W., Cleis R.A. Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range // J. Opt. Soc. Am. A. 1994. V. 11. № 1. P. 310–324.
- Riccardi A., Puglisi A., Grani P., Briguglio R., Esposito S., Agapito G., Biliotti V., Bonaglia M., Carbonaro L. et al. The ERIS Adaptive Optics System: first on-sky results of the ongoing commissioning at the VLT-UT4 // Proc. SPIE. 2022. V. 12185. 1218508. https://doi.org/10.1117/12.2629425
- Davies R., Esposito S., Feuchtgruber H., Glauser A., Glindemann A., Kenworthy M., Sturm E., Taylor W. ERIS first light results // Proc. SPIE. 2022. V. 12185. 1218504. https://doi.org/10.1117/12.2629842
- Wizinowich P., Lu J.R., Cetre S., Chin J., Correia C., Delorme J.-R., Gers L., Lilley S., Lyke J. et al. Keck All sky Precision Adaptive optics program overview // Proc. SPIE. 2022. V. 12185. 121850Q. https://doi.org/10.1117/12.2628275
- Takami H. Astronomical adaptive optics activities in Japan // Proc. SPIE. 2024. V. 13097. 1309717. https://doi.org/10.1117/12.3028613
- Rey N.M., Hellemeier J., Benhizia H., Blundell M., Chandler D., Cranney J., Delgado A.H., McGinness G., Ogane H. et al. The laser guide star system for the Giant Magellan Telescope laser tomography adaptive optics // Proc. SPIE. 2024. V. 13097. 1309724. https://doi.org/10.1117/12.3019822
- Johnson R.L., Kann L., Garton M.O., Massey S., Bigler C., Tavenner T., Laurvick T., Lison F., Enderlein M. et al. Recent advances in sodium laser beacon development // Proc. SPIE. 2024. V. 13097. 130972I. https://doi.org/10.1117/12.3018166
- Minowa Y., Ono Y., Doi Y., Tanaka Y., Bando T., Yoshida H., Terao K., Okita H., Wung M. et al. Subaru laser guide star system upgrade and on-sky characterization // Proc. SPIE. 2024. V. 13097. 1309735. https://doi.org/10.1117/12.3018789
- Boyer С., Wang L., Trubey M., Irarrazaval B., Miles J., Vogiatzis K., Véran J.-P., Atwood J. Progress report on the TMT Adaptive Optics Facility // Proc. SPIE. 2024. V. 13097. 130971Z. https://doi.org/10.1117/12.3019281
- Hardy J.W. Adaptive Optics for Astronomical Telescopes. N.Y.: Oxford University Press, 1998. 431 p.
- Bogachev V.A., Vereshchagin A.A., Volkov M.V., Garanin S.G., Glukhov M.A., Guk D.E., Koltygin M.O., Kopalkin A.V., Kuzin R.S., Kulikov S.M., Starikov F.A. Observation of astronomical objects by using an adaptive optical system with Rayleigh laser guide star // Proc. SPIE. 2021. V. 11916. 1191617. https://doi.org/10.1117/12.2603308
- Гаранин С.Г., Маначинский А.Н., Стариков Ф.А., Хохлов С.В. Фазовая коррекция лазерного излучения с помощью адаптивных оптических систем в РФЯЦ–ВНИИЭФ // Автометрия. 2012. Т. 48. № 2. С. 30–37.
- Andrews L.C., Phillips R.L. Laser beam propagation through random media. 2nd ed. Bellingham, WA: SPIE Press, 2005. 808 p.
- Рукосуев А.Л., Белоусов В.Н., Никитин А.Н., Шелдакова Ю.В., Кудряшов А.В., Богачев В.А., Волков М.В., Гаранин С.Г., Стариков Ф.А. Быстрая адаптивная оптическая система для коррекции волнового фронта лазерного излучения, искаженного атмосферной турбулентностью // Квантовая электроника. 2020. Т. 50. № 8. С. 707–709.
- Белоусов В.Н., Богачев В.А., Волков М.В., Гаранин С.Г., Кудряшов А.В., Никитин А.Н., Рукосуев А.Л., Стариков Ф.А., Шелдакова Ю.В., Шнягин Р.А. Исследования пространственно-временных характеристик искаженного турбулентностью лазерного излучения при его динамической фазовой коррекции в адаптивной оптической системе // Квантовая электроника. 2021. Т. 51. № 11. С. 992–999.
- Bogachev V.A., Volkov M.V., Guk D.E., Koltygin M.O., Kudryashov A.V., Kuzin R.S., Rukosuev A.L., Starikov F.A., Shnyagin R.A., Shtylev A.S. Registration and analysis of laser beam wavefront using a Shack-Hartmann sensor under conditions of artificial pavilion turbulence // Proc. SPIE. 2023. V. 12780. 127800V. https://doi.org/10.1117/12.2690304
- Волков М.В., Богачев В.А., Стариков Ф.А., Шнягин Р.А. Численные исследования динамической адаптивной фазовой коррекции турбулентных искажений излучения и оценка их временных характеристик с помощью датчика Шэка–Гартмана // Оптика атмосферы и океана. 2021. T. 34. № 7. С. 547–554. https://doi.org/10.15372/AOO20210710
- Богачев В.А., Немцева А.В., Стариков Ф.А. Формирование изображения звезды при влиянии углового анизопланатизма в турбулентной атмосфере // Журнал технической физики. 2024. Т. 94. № 6. С. 827–837. https://doi.org/10.61011/JTF.2024.06.58123.59-24
Supplementary files
