Stability, electronic and magnetic properties of Dirac semimetall CD3AS2, doped by manganese and chromium
- Authors: Kulatov E.T.1, Uspenskii Y.A.2
-
Affiliations:
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Lebedev Physical Institute, Russian Academy of Sciences
- Issue: Vol 522, No 1 (2025)
- Pages: 23-34
- Section: ФИЗИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/305059
- DOI: https://doi.org/10.31857/S2686740025030041
- EDN: https://elibrary.ru/pvlmqw
- ID: 305059
Cite item
Abstract
Doping Dirac semimetals by magnetic atoms promises the development of new topological materials with broken time-reversal symmetry. According to the theoretical models, the unusual transport properties should be observed in such materials: negative magnetoresistance, π Aharonov–Bohm effect, quantum Hall effect and other ones. However, the real alloys are complex objects which differ in many ways from model representations. In this paper the stability and properties of two substitutional alloys are analysed by means of the first principles calculations: (Cd1–xMnx)3As2 and (Cd1–xCrx)3As2. The main difference between these two topological alloys is due to the type of doping: isovalent in case of Mn and non-isovalent in case of Cr. Our calculations show that the valence of doped atoms determines directly the position of the Fermi level and the nature of spin ordering in alloys under consideration, as well as the preservation of the Dirac cone in electron spectrum. The features found are of a regular nature and weakly depend on the details of the spatial arrangement of magnetic atoms in alloys.
About the authors
E. T. Kulatov
Prokhorov General Physics Institute, Russian Academy of Sciences
Author for correspondence.
Email: kulatov@nsc.gpi.ru
Moscow, Russia
Y. A. Uspenskii
Lebedev Physical Institute, Russian Academy of Sciences
Email: uspenski@td.lpi.ru
Moscow, Russia
References
- Armitage N.P., Mele E.J., Vishvanath A. Weyl and Dirac semimetals in three-dimensional solids // Rev. Mod. Phys. 2018. V. 90. № 1. 015001. https://doi.org/10.1103/RevModPhys.90.015001
- Wang S., Lin B.C., Wang A.Q., Yu D.P., Liao Z.M. Quantum Transport in Dirac and Weyl Semimetals: A Review // Adv. Phys.: X. 2017. V. 2. P. 518–544. https://doi.org/10.1080/23746149.2017.1327329
- Burkov A.A. Topological Semimetal // Nat. Mater. 2016. V. 15. P. 1145–1148. https://doi.org/10.1038/nmat4788
- Wang A.-Q., Ye X.-G., Yu D.-P., Liao Z.M. Topological semimetal nanostructures: from properties to topotronics // ACS Nano. 2020. V. 14. P. 3755–3778. https://doi.org/10.1021/acsnano.9b07990
- Liu P., Williams J.R., Cha J.J. Topological nanomaterials // Nat. Rev. Mater. 2019. V. 4. P. 479–496. https://doi.org/10.1038/s41578-019-0113-4
- Wang L.X., Li C.Z., Yu D.P., Liao Z.M. Aharonov–Bohm Oscillations in Dirac Semimetal Cd3As2 Nanowires // Nat. Commun. 2016. V. 7. 10769. https://doi.org/10.1038/ncomms10769
- Yu W., Pan W., Medlin D.L., Rodriguez M.A., Lee S.R., Bao Z.Q., Zhang F. π and 4π Josephson Effects Mediated by a Dirac Semimetal // Phys. Rev. Lett. 2018. V. 120. 177704. https://doi.org/10.1103/PhysRevLett.120.177704
- Ali M.N., Gibson Q., Jeon S., Zhou B.B., Yazdani A., Cava R.J. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene // Inorg. Chem. 2014. V. 53. P. 4062–4067. https://doi.org/10.1021/ic403163d
- He L.P., Hong X.C., Dong J.K., Pan J., Zhang Z., Zhang J., Li S.Y. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 // Phys. Rev. Lett. 2014. V. 113. 246402. https://doi.org/10.1103/PhysRevLett.113.246402
- Lv B.Q., Qian T., Ding H. Experimental perspective on three-dimensional topological semimetals // Rev. Mod. Phys. 2021. V. 93. 025002. https://doi.org/10.1103/RevModPhys.93.025002
- Bernevig B., Felser C., Beidenkopf H. Progress and prospects in magnetic topological materials // Nature. 2022. V. 603. P. 41–51. https://doi.org/10.1038/s41586-021-04105-x
- Deng M.-X., Luo W., Wang R.-Q., Sheng L., Xing D.Y. Weyl semimetal induced from a Dirac semimetal by magnetic doping // Phys. Rev. B. 2017. V. 96. P. 155141–155147. https://doi.org/10.1103/PhysRevB.96.155141
- Neupane M., Xu S.-Y., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., Lin H., Bansil A., Chou F., Hasan M.Z., Chang T.-R., Jeng H.-T. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 // Nat. Commun. 2014. V. 5. P. 3786–3793. https://doi.org/10.1038/ncomms4786
- Liu Z.K., Jiang J., Zhou B., Wang Z.J., Zhang Y., Weng H.M. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 // Nat. Mater. 2014. V. 13. P. 677–681. https://doi.org/10.1038/nmat3990
- Wang He, Wang H., Liu H., Lu H., Yang W., Jia S., Liu X.-J., Xie X.C., Wei J., Wang J. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals // Nat. Mater. 2015. V. 15. № 1. P. 38–42. https://doi.org/10.1038/nmat4456
- Lu W., Ge S.F., Liu X.F., Lu H., Li C.Z., Lai J.W., Zhao C.A., Liao Z.M., Jia S., Sun D. Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac semimetal Cd3As2 // Phys. Rev. B. 2017. V. 95. 024303. https://doi.org/10.1103/PhysRevB.95.024303
- Jin H., Dai Y., Ma Y.-D., Li X.-R., Wei W., Yua L., Huang B.-B. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal in Cd3As2 // J. Mater. Chem. C2015. V. 3. № 15. P. 3547–3551. https://doi.org/10.1039/C4TC02609H
- Guo J., Zhao X., Sun N., Xiao X., Liu W., Zhang Z. Tunable quantum Shubnikov–de Haas oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2 // J. Mater. Sci. Tech. 2021. V. 76. P. 247–253. https://doi.org/10.1016/j.jmst.2020.11.023
- Kulatov E.T., Uspenskii Yu.A., Oveshnikov L.N., Mekhiya A.B., Davydov A.B., Ril’ A.I., Marenkin S.F., Aronzon B.A. Electronic, magnetic and magnetotransport properties of Mn-doped Dirac semimetal Cd3As2 // Acta Materialia. 2021. V. 219. P. 117249–117258. https://doi.org/10.1016/j.actamat.2021.117249
- Yuan X., Cheng P., Zhang L., Zhang C., Wang J., Sun Q., Zhou P., Zhang D.W., Hu Z., Wan X., Yan H., Li Z., Xiu F., Liu Y. Direct observation of Landau level resonance and mass generation in Dirac semimetal Cd3As2 // Nano Lett. 2017. V. 17. P. 2211–2219. https://doi.org/10.1021/acs.nanolett.6b04778
- Liu Y., Tiwari R., Narayan A., Jin Z., Yuan X., Zhang C., Chen F., Li L., Xia Z., Sanvito S., Zhou P., Xiu F. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films // Phys. Rev. B. 2018. V. 97. № 8. 085303. https://doi.org/10.1103/PhysRevB.97.085303
- Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total energy calculations using a plane–wave basis set // Phys. Rev. B. 1996. V. 54. № 16. P. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
- Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
- Wang V., Xu N., Liu J.C., Tang G., Geng W.T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code // Computer Physics Communications. 2021. V. 267. P. 108033–108051. https://doi.org/10.17632/v3bvcypg9v.1
- Stoner E.C. Collective electron ferromagnetism // Proc. Roy. Soc. London A. 1938. V. 165. № 922. P. 372–414. 10.1098/rspa.1938.0066' target='_blank'>https://doi: 10.1098/rspa.1938.0066
- Kramers H.A. L’interaction entre les atomes magnétogènes dans un cristal paramagnétique // Physica. 1934. V. 1. P. 182–192. https://doi.org/10.1016/S0031-8914(34)90023-9
- Anderson P.W. Antiferromagnetism. Theory of superexchange interaction // Phys. Rev. 1950. V. 79. P. 350–356. https://doi.org/10.1103/PhysRev.79.350
- Zener C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure // Phys. Rev. 1951. V. 82. P. 403–405. https://doi.org/10.1103/PhysRev.82.403
- Anderson P.W., Hasegawa H. Considerations on double exchange // Phys. Rev. 1955. V. 100. P. 675–681. https://doi.org/10.1103/PhysRev.100.675
- Kulatov E., Uspenskii Y., Mariette H., Cibert J., Ferrand D., Nakayama H., Ohta H. Ab initio study of magnetism in III–V- and II–VI-based diluted magnetic semiconductors // J. Supercond. Nov. Magn. 2003. V. 16. P. 123–126. https://doi.org/10.1023/A:1023209423446
- Uspenskii Yu., Kulatov E., Mariette H., Nakayama H., Ohta H. Ab initio study of the magnetism in GaAs, GaN, ZnO, and ZnTe–based diluted magnetic semiconductors // J. Magn. Magn. Mater. 2003. V. 258–259. P. 248–250. https://doi.org/10.1016/S0304-8853(02)01033-8
- Uspenskii Yu.A., Kulatov E.T. Ab initio calculation and analysis of the properties of digital magnetic heterostructures and diluted magnetic semiconductors of IV and III–V groups // J. Magn. Magn. Mater. 2009. V. 321. P. 931–934. https://doi.org/10.1016/j.jmmm.2008.11.057
- Celinski Z., Burlan A., Rzepa B., Zdanowicz W. Preparation, structure and magnetic properties of (Cd1–xMnx)3As2 crystals // Mat. Res. Bull. 1987. V. 22. № 3. P. 419–426. https://doi.org/10.1016/0025-5408(87)90061-4
- Denissen C.J.M., Nishihara H., Nouwens P.A.M., Kopinga K., de Jonge W.J.M. Spin glass behavior of (Cd1–xMnx)3As2 // J. Magn. Magn. Mater. 1986. V. 54–57. № 3. P. 1291–1292. https://doi.org/10.1016/0304-8853(86)90823-1
- Denissen C.J.M., Nishihara H., van Gool J.C., de Jonge W.J.M. Magnetic behavior of the semimagnetic semiconductor (Cd1–xMnx)3As2 // Phys. Rev. B. 1986. V. 33. № 11. P. 7637–7646. https://doi.org/10.1103/PhysRevB.33.7637
- Kulatov E.T., Uspenskii Yu.A., Kugel K.I. Non-trivial evolution of the Dirac cone in chromium doped Dirac semimetal Cd3As2 // J. Phys. Chem. Solids. 2024. V. 194. 112215. https://doi.org/10.1016/j.jpcs.2024.112215
- Ril’ A.I., Oveshnikov L.N., Ovcharov A.V., Marenkin S.F. Synthesis and phase composition of Cd3As2 Dirac semimetal crystals doped with Cr // Vacuum. 2024. V. 230. 113692. https://doi.org/10.1016/j.vacuum.2024.113692
Supplementary files
