Continuous pulsed-periodic laser radiation generator
- Authors: Garanin S.G.1, Demyanov A.V.2, Derkach V.N.1, Makarov K.N.2, Ostrovskiy V.A.2, Pergament M.I.2
-
Affiliations:
- The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
- State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research
- Issue: Vol 520, No 1 (2025)
- Pages: 73-79
- Section: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://journals.rcsi.science/2686-7400/article/view/293938
- DOI: https://doi.org/10.31857/S2686740025010106
- EDN: https://elibrary.ru/GTDQVC
- ID: 293938
Cite item
Abstract
The application of an amplifying module developed for a pulse-periodic amplifier as an active medium of a pulse-periodic continuous-wave laser radiation generator is considered. The created computer model of such a generator is described. The results of computational experiments are presented. It is shown that in this generator in the free-running mode it is possible to obtain more than 80% of the pump energy conversion into coherent radiation of the generator.
About the authors
S. G. Garanin
The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
Email: demyanov@triniti.ru
Academician of the RAS, Institute of Laser Physical Research
Russian Federation, Sarov, Nizhny Novgorod RegionA. V. Demyanov
State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research
Author for correspondence.
Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow
V. N. Derkach
The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
Email: demyanov@triniti.ru
Institute of Laser Physical Research
Russian Federation, Sarov, Nizhny Novgorod RegionK. N. Makarov
State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research
Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow
V. A. Ostrovskiy
State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research
Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow
M. I. Pergament
State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research
Email: demyanov@triniti.ru
Russian Federation, Troitsk, Moscow
References
- Mason P., Banerjee S., Smith J. et al. Efficient Operation of a High Energy Yb: YAG DPSSL Amplifier // Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019. (CLEO/Europe-EQEC). https://doi.org/10.1109/cleoe-eqec.2019.8871657
- Sekine T., Kurita T., Hatano Y. et al. 253 J at 0.2 Hz, LD pumped cryogenic helium gas cooled Yb: YAG ceramics laser // Opt. Express. 2022. V. 30. P. 44385. https://doi.org/10.1364/OE.470815
- Евтихиев Н.Н., Мясников Д.В. Волоконные лазеры и их применение в индустрии и медицине // Лазеры в науке, технике, медицине. 2023. С. 151–156.
- Azhari A., Sulaiman S., Prasada Rao A.K. A review on the application of peening processes for surface treatment // IOP Conference Series Materials Science and Engineering. February 2016. 114(1):012002. https://doi.org/10.1088/1757-899X/114/1/012002
- Jiajun Wu, Zhihu Zhou, Xingze Lin, Hongchao Qiao, Jibin Zhao, Wangwang Ding. Improving the Wear and Corrosion Resistance of Aeronautical Component Material by Laser Shock Processing: A Review // Materials. 2023. V. 16. № 11. 4124. https://doi.org/10.3390/ma16114124
- Łukasz Łach. Recent Advances in Laser Surface Hardening: Techniques, Modeling Approaches, and Industrial Applications // Crystals. 2024. V. 14. № 8. Р. 726. https://doi.org/10.3390/cryst14080726
- Zhang Ya., Wang C., Xu W., Zhang X. et al. Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties // Metals. 2024. V. 14. № 10. 1152. https://doi.org/10.3390/met14101152
- Парафонова В. Арктические маршруты лазера // Наука в России. 2014. № 2. С. 20–27.
- Блохин О.А., Востриков В.Г., Красюков А.Г. Мобильный лазерный комплекс для аварийно-восстановительных работ в газовой промышленности // Газовая промышленность. 2001. № 12. С. 33–34.
- Гаранин С.Г., Деркач В.Н., Макаров К.Н., Островский В.А., Пергамент М.И., Путилин М.В., Сизмин Д.В. Современные тенденции создания высокоэнергетических импульсно-периодических лазеров непрерывной генерации // Доклады РАН. Физика, технические науки. 2023. T. 513. № 1. C. 18–28. https://doi.org/10.1134/S1028335823120029
- Sun L., Guo Y., Shao C. et al. 10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd: YAG oscillator and an extra-cavity adaptive optics system // Opt. Lett. 2018. V. 43. № 17. P. 4160–4163. https://doi.org/10.1364/OL.43.004160
- Guo Y., Peng Q., Bo Y., et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd: YAG slab laser based on a stable–unstable hybrid cavity // Opt. Lett. 2020. V. 45. № 5. P. 1136–1139. https://doi.org/10.1364/OL.385387
- Демьянов А.В., Макаров К.Н., Островский В.А., Пергамент М.И. Усиление в среде Yb: YAG в диапазоне криогенных температур // Письма в ЖТФ. 2024. T. 50. № 14. C. 29–32. https://doi.org/10.61011/TPL.2024.07.58733.19799.9799
Supplementary files
