Laser nanoablation of diamond and formation of atomic-scale surface structures
- Authors: Kononenko T.V.1, Kononenko V.V.1, Zavedeev E.V.1, Pashinin V.P.1, Komlenok M.S.1, Pivovarov P.A.1, Ashikkalieva K.K.1, Dezhkina M.A.1, Kurochitsky N.D.1, Kupriyanov A.A.1, Konov V.I.1
-
Affiliations:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Issue: Vol 520, No 1 (2025)
- Pages: 24-33
- Section: ФИЗИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/293928
- DOI: https://doi.org/10.31857/S2686740025010041
- EDN: https://elibrary.ru/GUFOYQ
- ID: 293928
Cite item
Abstract
An experimental study of the mode of multi-pulse (108–109 pulses) laser nanoablation of single-crystal diamond, which is realized at irradiation intensity below the threshold of laser graphitization and allows controlling the depth of laser treatment of this material with accuracy to the atomic layer, has been carried out. The obtained dependences of the nanoablation rate on the laser energy density for various combinations of laser pulse duration and radiation wavelength indicate that the rate of photostimulated oxidation in air atmosphere is determined by the density of laser plasma created inside the material. A consistent decrease in the nanoablation rate with increasing concentration of nitrogen impurity in diamond was found. It was found that the duration of laser etching in the nanoablation mode and, respectively, the maximum depth of the created nanostructures are limited by the effect of cumulative graphitization.
Keywords
About the authors
T. V. Kononenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Author for correspondence.
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
V. V. Kononenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
E. V. Zavedeev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
V. P. Pashinin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
M. S. Komlenok
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
P. A. Pivovarov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
K. K. Ashikkalieva
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
M. A. Dezhkina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
N. D. Kurochitsky
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
A. A. Kupriyanov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Russian Federation, Moscow
V. I. Konov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: taras.kononenko@nsc.gpi.ru
Academician of the RAS
Russian Federation, MoscowReferences
- Rothschild A.C., Ehrich D.J. Excimer-laser etching of diamond and hard carbon films by direct writing and optical projection // J. Vac. Sci. Technol. B. 1986. V. 4. Р. 310–314.
- Hunn J.D., Withrow S.P., White C.W., Clausing R.E., Heatherly L., Christensen C.P. // Fabrication of single-crystal diamond microcomponents // Appl. Phys. Lett. 1994. V. 65(24). P. 3072–3074.
- Ramanathan D., Molian P.A. Micro- and sub-micromachining of type IIa Single crystal diamond using a Ti:sapphire femtosecond laser // J. Manufacturing Science and Engineering. 2002. V. 124 (2). P. 389–396.
- Shinoda M., Gattass R.R., Mazur E. Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces // J. Appl. Phys. 2009. V. 105(5). P. 053102.
- Zalloum O.H.Y., Parrish M., Terekhov A., Hofmeister W. On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing // Opt. Express. 2010. V. 18(12). P. 13122–13135.
- Konov V.I. Laser in micro and nanoprocessing of diamond materials // Laser & Photonics Reviews. 2012. V. 6(6). P. 739–766.
- Ali B., Litvinyuk I.V., Rybachuk M. Femtosecond laser micromachining of diamond: Current research status, applications and challenges // Carbon. 2021. V. 179. P. 209–226.
- Apostolova T., Kurylo V., Gnilitskyi I. Ultrafast laser processing of diamond materials: A Review. Frontiers in Physics. 2021. V. 9.
- Кононенко В.В., Комленок М.С., Пименов С.М., Конов В.И. Фотоиндуцированное лазерное травление алмазной поверхности // Квантовая электроника. 2007. V. 37(11). P. 1043–1046.
- Gololobov V.M., Kononenko V.V., Konov V.I. Laser nanoablation of a diamond surface in air and vacuum // Optics & Laser Technology. 2020. V. 131. P. 106396.
- Baldwin C.G., Downes J.E., Mildren R.P. Enhanced etch rate of deep-UV laser induced etching of diamond in low pressure conditions // Applied Physics Letters. 2020. V. 117 (11). P. 111601.
- Komlenok M.S., Kononenko V.V., Ralchenko V.G., Pimenov S.M., Konov V.I. Laser Induced Nanoablation of Diamond Materials // Physics Procedia. 2011. V. 12. P. 37–45.
- Kononenko V.V., Gololobov V.M., Komlenok M.S., Konov V.I. Nonlinear photooxidation of diamond surface exposed to femtosecond laser pulses // Laser Physics Letters. 2015. V. 12(9). P. 096101.
- Mildren R.P., Downes J.E., Brown J.D., Johnston B.F., Granados E., Spence D.J., Lehmann A., Weston L., Bramble A. Characteristics of 2-photon ultraviolet laser etching of diamond // Optical Materials Express. 2011. V. 1(4). P. 576–585.
- Bandis C., Pate B.B. Electron emission due to exciton breakup from negative electron affinity diamond // Phys. Rev. Lett. 1995. 74(5). P. 777–780.
- Frenklach M., Huang D., Thomas R.E., Rudder R.A., Markunas R.J. Activation energy and mechanism of CO desorption from (100) diamond surface // Appl. Phys. Lett. 1993. V. 63(22). P. 3090–3092.
- Griffiths B., Kirkpatrick A., Nicley S.S., Patel R.L., Zajac J.M., Morley G.W., Booth M.J., Salter P.S., Smith J.M. Microscopic processes during ultrafast laser generation of Frenkel defects in diamond // Physical Review B. 2021. V. 104(17). P. 174303.
- Kononenko T.V., Ashikkalieva K.K., Ral’chenko V.G., Kononenko V.V., Konov V.I. Defect-assisted optical breakdown in synthetic diamonds irradiated by IR femtosecond pulses // Diamond & Related Materials. 2024. V. 142. P. 110812.
- Kononenko V.V., Komlenok M.S., Chizhov P.A., Bukin V.V., Bulgakova V.V., Khomich A.A., Bolshakov A.P., Konov V.I., Garnov S.V. Efficiency of photoconductive terahertz generation in nitrogen-doped diamonds // Photonics. 2022. V. 9(1). P. 18.
- Kononenko V.V., Gololobov V.M., Kononenko T.V., Konov V.I. Photoinduced graphitization of diamond // Laser Physics Letters. 2015. V. 12(1). P. 016101.
Supplementary files
