Устройство для прецизионного позиционирования источников низкотемпературной плазмы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В последние годы применение низкотемпературной плазмы в биомедицинских и сельскохозяйственных исследованиях вызывает значительный интерес благодаря способности плазмы эффективно стерилизовать, модифицировать поверхности и генерировать активные формы кислорода и азота. Точное позиционирование источников плазмы и характеризация режимов работы источников являются первоочередными задачами при внедрении в реальную практику. В работе представлено универсальное устройство для позиционирования источников плазмы и измерительной аппаратуры. Устройство изготовлено методом послойного наплавления (3D-печать), обладает относительно высокой прочностью конструкции при отсутствии металлосодержащих элементов. Разработанное устройство позволяет с высокой точностью позиционировать активные элементы источников плазмы над объектами различных размеров и состава, а также позволяет имплементировать чувствительные методы диагностики характеристик плазмы и изменения параметров обрабатываемых объектов.

Полный текст

Доступ закрыт

Об авторах

Е. М. Кончеков

Институт общей физики им. А.М. Прохорова Российской академии наук

Автор, ответственный за переписку.
Email: konchekov@fpl.gpi.ru
Россия, Москва

А. С. Конькова

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: konchekov@fpl.gpi.ru
Россия, Москва

А. В. Князев

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: konchekov@fpl.gpi.ru
Россия, Москва

А. П. Глинушкин

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: konchekov@fpl.gpi.ru

академик РАН

Россия, Москва

С. В. Гудков

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: konchekov@fpl.gpi.ru
Россия, Москва

Список литературы

  1. Gudkov S.V., Sarimov R.M., Astashev M.E. et al. Modern Physical Methods and Technologies in Agriculture // Phys. Usp. 2024. V. 67. № 2. P. 194. https://doi.org/10.3367/UFNe.2023.09.039577
  2. Konchekov E.M., Gusein-zade N., Burmistrov D.E. et al. Advancements in Plasma Agriculture: A Review of Recent Studies // IJMS. 2023. V. 24. P. 15093. https://doi.org/10.3390/ijms242015093
  3. Adamovich I., Agarwal S., Ahedo E. et al. The 2022 Plasma Roadmap: Low Temperature Plasma Science and Technology // J. Phys. D: Appl. Phys. 2022. V. 55. № 373001. https://doi.org/10.1088/1361-6463/ac5e1c
  4. Konchekov E.M., Gudkova V.V., Burmistrov D.E. et al. Bacterial Decontamination of Water-Containing Objects Using Piezoelectric Direct Discharge Plasma and Plasma Jet // Biomolecules. 2024. V. 14. P. 181. https://doi.org/10.3390/biom14020181
  5. Bruggeman P.J., Bogaerts A., Pouvesle J.M. et al. Plasma–Liquid Interactions // J. Applied Physics. 2021. V. 130. P. 200401. https://doi.org/10.1063/5.0078076
  6. Gudkova V.V., Razvolyaeva D.A., Borzosekov V.D., Konchekov E.M. Features of the FOX and Griess Method for Assessing the Biological Activity of Plasma Treated Solutions // Plasma Chem. Plasma Process. 2024. V. 44. P. 305. https://doi.org/10.1007/s11090-023-10418-8
  7. Konchekov E.M., Kolik L.V., Danilejko Y.K. et al. Enhancement of the Plant Grafting Technique with Dielectric Barrier Discharge Cold Atmospheric Plasma and Plasma-Treated Solution // Plants. 2022. V. 11. P. 1373. https://doi.org/10.3390/plants11101373
  8. Korzec D., Hoffmann M., Nettesheim S. Application of Plasma Bridge for Grounding of Conductive Substrates Treated by Transferred Pulsed Atmospheric Arc // Plasma. 2023. V. 6. P. 139. https://doi.org/10.3390/plasma6010012
  9. Korzec D., Hoppenthaler F., Andres T., Guentner S., Lerach S. Application of Nitrogen Piezoelectric Direct Discharge for Increase in Surface Free Energy of Polymers // Plasma. 2022. V. 5. P. 111. https://doi.org/10.3390/plasma5010009
  10. Hofmans M., Sobota A. Influence of a Target on the Electric Field Profile in a kHz Atmospheric Pressure Plasma Jet with the Full Calculation of the Stark Shifts // J. Applied Physics. 2019. V. 125. № 043303. https://doi.org/10.1063/1.5075544
  11. Goldberg B.M., Hoder T., Brandenburg R. Electric Field Determination in Transient Plasmas: In Situ & Non-Invasive Methods // Plasma Sources Sci. Technol. 2022. V. 31. № 073001. https://doi.org/10.1088/1361-6595/ac6e03
  12. Orr K., Tang Y., Simeni Simeni M. et al. Measurements of Electric Field in an Atmospheric Pressure Helium Plasma Jet by the E-FISH Method // Plasma Sources Sci. Technol. 2020. V. 29. № 035019. https://doi.org/10.1088/1361-6595/ab6e5b
  13. Yang J., Barnat E.V., Im S., Go D.B. Spatiotemporally Resolved Measurements of Electric Field around a Piezoelectric Transformer Using Electric-Field Induced Second Harmonic (E-FISH) Generation // J. Phys. D: Appl. Phys. 2022. V. 55. № 225203. https://doi.org/10.1088/1361-6463/ac406a
  14. Li X., Jin S., Song K. et al. Temporal Electric Field of a Helium Plasma Jet by Electric Field Induced Second Harmonic (E-FISH) Method. // Plasma Sci. Technol. 2023. V. 25. № 015402. https://doi.org/10.1088/2058-6272/ac8419
  15. Robert E., Sarron V., Riès D. et al. Characterization of Pulsed Atmospheric-Pressure Plasma Streams (PAPS) Generated by a Plasma Gun // Plasma Sources Sci. Technol. 2012. V. 21. № 034017. https://doi.org/10.1088/0963-0252/21/3/034017
  16. Mat Saman N., Ahmad M.H., Buntat Z. Experimental Analysis of Cold Plasma With Glow Discharge Mechanism Under a Variety of Input Parameters // IEEE Trans. Plasma Sci. 2022. V. 50. P. 2110. https://doi.org/10.1109/TPS.2022.3176455
  17. Nishiura M., Yoshida Z., Mushiake T. et al. Electro-Optic Probe Measurements of Electric Fields in Plasmas // Rev. Sci. Instrum. 2017. V. 88. № 023501. https://doi.org/10.1063/1.4974740

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Модель устройства: вид спереди (а), вид сбоку (б), вид сверху (в); 1 – шток; 2 – крепежный элемент; 3 – фиксатор; 4 – втулка для крепления исследуемого объекта (электрода); 5 – канавка для выставления угла поворота; 6 – муфта для вертикального перемещения предметных столиков; 7 – предметный столик; 8 – механизм горизонтальной юстировки; 9 – муфта для горизонтального перемещения предметных столиков; 10 – платформа; 11 – юстировочные ножки; 12 – компенсационный элемент.

Скачать (116KB)
3. Рис. 2. Применение устройства позиционирования для регистрации спектров свечения плазмы при одновременной обработке водосодержащего объекта. 1 – Активный элемент источника плазмы, 2 – плазменная струя, 3 – объект обработки, 4 – линза.

Скачать (152KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».