On the theory of contact problems for composite media with anisotropic structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, an exact solution to the contact problem of the action of a strip rigid stamp of finite width on a composite layered material having an anisotropic structure is constructed. Problems of this kind have been studied in sufficient depth for isotropic materials. Contact problems for non-classical shaped stamps acting on composite materials have been poorly studied. The applied numerical methods for composite materials do not take into account the contact stress concentrations occurring at the boundary, which are characteristic of contact problems, do not fully reveal the malleability of the stamp insertion into an anisotropic medium when the stamp size changes, and are difficult to analyze in dynamic cases. In contrast to the isotropic case, when the symbol of the kernel of the integral equation is described by a meromorphic function, in the anisotropic case one has to meet with an analytical function of two complex variables of complex structure. Contact problems for anisotropic materials arise in many areas when creating various engineering equipment and products, in construction, when creating an electronic element base, as well as in the mechanics of natural processes.. In this paper, using the example of the effect of a strip rigid stamp of finite width on a composite laminated material, an exact solution of a static problem for one type of anisotropy is constructed using the block element method. The practice of constructing exact solutions to boundary value problems shows that with their help it is possible to capture and identify properties of solutions, the study of which is inaccessible to numerical methods. Examples are the identification of new types of earthquakes, starting ones, a new type of cracks not previously described, new types of earthquake precursors and resonances of structures. On the basis of exact solutions, it is possible to build high-precision approximations, the application of numerical methods to which already turns out to be more effective than as a result of direct inversion of volumetric and boundary differential operators of boundary problems. The result of this article can be useful both in engineering practice and in geophysics in describing the behavior of a mountain range on an anisotropic bedrock. In addition, the method opens up the possibility to investigate anisotropic cases in a dynamic formulation using contour integrals in the representation of solutions.

Full Text

Restricted Access

About the authors

V. A. Babeshko

Kuban State University; Southern Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: babeshko41@mail.ru

Academician of the RAS

Russian Federation, Krasnodar; Rostov-on-Don

O. V. Evdokimova

Southern Scientific Center of the Russian Academy of Sciences

Email: babeshko41@mail.ru
Russian Federation, Rostov-on-Don

O. M. Babeshko

Kuban State University

Email: babeshko41@mail.ru
Russian Federation, Krasnodar

V. S. Evdokimov

Kuban State University

Email: babeshko41@mail.ru
Russian Federation, Krasnodar

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».