Prospects for achieving carbon neutrality by economically developed countries
- Authors: Klimenko V.V.1,2,3, Klimenko A.V.2, Tereshin A.G.1,2
-
Affiliations:
- National Research University «MPEI»
- National University of Sciences and Technology «MISIS»
- Energy Research Institute of the Russian Academy of Sciences
- Issue: Vol 517, No 1 (2024)
- Pages: 71-80
- Section: ТЕХНИЧЕСКИЕ НАУКИ
- URL: https://journals.rcsi.science/2686-7400/article/view/272267
- DOI: https://doi.org/10.31857/S2686740024040116
- EDN: https://elibrary.ru/JOMPUK
- ID: 272267
Cite item
Abstract
The prospects for achieving carbon neutrality by economically developed countries (USA, EU, Norway, Canada, Japan and Australia) are studied. An analysis of the structure of energy and land use in these countries is carried out. Scenario estimates of the dynamics of carbon indicators of the economies of the world’s leading countries have been developed.
It is shown that the current rates of decarbonisation and development of the carbon capture and storage industry do not guarantee the achievement of climate neutrality by 2050, even in the world’s leading economies. A central challenge in achieving climate neutrality is the rapid and large-scale deployment of CCS in all its possible manifestations. All of the countries studied, except Japan, have their own capacity to store carbon for more than a hundred years.
To achieve climate neutrality, the leading OECD countries will need to ensure the annual capture of at least 6 billion tons of CO2 by 2050, which is almost 25 times higher than their current capacities (operating, under construction and under design) Despite the fact that climate change occupies almost a leading place on the global agenda, the actual results of efforts in this area are far from declared. It is no longer realistic to keep warming within 1.5°C, and at the current rate of decarbonization, even by world leaders, the defense of the second critical frontier in 2°C will soon be threatened.
Full Text

About the authors
V. V. Klimenko
National Research University «MPEI»; National University of Sciences and Technology «MISIS»; Energy Research Institute of the Russian Academy of Sciences
Author for correspondence.
Email: nilgpe@mpei.ru
Academician of the RAS
Russian Federation, Moscow; Moscow; MoscowA. V. Klimenko
National University of Sciences and Technology «MISIS»
Email: nilgpe@mpei.ru
Academician of the RAS
Russian Federation, MoscowA. G. Tereshin
National Research University «MPEI»; National University of Sciences and Technology «MISIS»
Email: nilgpe@mpei.ru
Russian Federation, Moscow; Moscow
References
- Shirov A.A., Kolpakov A.Yu., Gambhir A., Koasidis K., Köberle A. C., McWilliams B., Nikas A. Stakeholder-driven scenario analysis of ambitious decarbonisation of the Russian economy // Renewable and Sustainable Energy Transition. 2023. V. 4. Id. 100055. https://doi.org/10.1016/j.rset.2023.100055
- Hechelmann R.-H., Paris A., Buchenau N., Ebersold F. Decarbonisation strategies for manufacturing: A technical and economic comparison // Renewable and Sustainable Energy Reviews. 2023. V. 188. Id. 113797. https://doi.org/10.1016/j.rser.2023.113797
- Rinaldi A., Syla A., Patel M.K., Parra D. Optimal pathways for the decarbonisation of the transport sector: Trade-offs between battery and hydrogen technologies using a whole energy system perspective // Cleaner Production Letters. 2023. V. 5. Id. 100044. https://doi.org/10.1016/j.clpl.2023.100044
- Li C., Tian G. Chen C., Liu P., Li Z. A long-term or a short-term decision when planning the decarbonisation transition pathway of power systems? A case study of China // Energy for Sustainable Development. 2023. V. 76. Id. 101264. https://doi.org/10.1016/j.esd.2023.101264
- Stephenson J.R., Sovacool B.K., Inderberg T.H.J. Energy cultures and national decarbonisation pathways // Renewable and Sustainable Energy Reviews. 2021. V. 137. Id. 110592. https://doi.org/10.1016/j.rser.2020.110592
- Fragkos P., van Soest H. L., Schaeffer R., Reedman L., Köberle A.C., Macaluso N., Evangelopoulou S., De Vita A., Sha F., Qimin C., Kejun J., Mathur R., Shekhar S., Dewi R.G., Diego S.H., Oshiro K., Fujimori S., Park C., Safonov G., Iyer G. Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States // Energy. 2021. V. 216. Id. 119385. https://doi.org/10.1016/j.energy.2020.119385
- Kilinc-Ata N., Proskuryakova L.N. Empirical analysis of the Russian power industry’s transition to sustainability // Utilities Policy. 2023. V. 82. Id. 101586. https://doi.org/10.1016/j.jup.2023.101586
- Durakovic G., Zhang H., Knudsen B.R., Tomasgard A., del Granado P.C. Decarbonizing the European energy system in the absence of Russian gas: Hydrogen uptake and carbon capture developments in the power, heat and industry sectors // J. Cleaner Production. 2024. V. 435. Id. 140473. https://doi.org/10.1016/j.jclepro.2023.140473
- Crowley-Vigneau A., Kalyuzhnova Y., Ketenci N. What motivates the ‘green’ transition: Russian and European perspectives // Resources Policy. 2023. V. 81. Id. 103128. https://doi.org/10.1016/j.resourpol.2022.103128
- Клименко В.В., Клименко А.В., Терешин А.Г. Безуглеродная Россия: есть ли шанс достичь углеродной нейтральности к 2060 году? // Доклады РАН. Физика, технические науки. 2023. Т. 511. С. 67–77. https://doi.org/10.31857/S2686740023040065 EDN: VPFUXM
- Клименко В.В., Клименко А.В., Терешин А.Г., Локтионов О.А. Дорога к климатической нейтральности: через лес под землю // Энергетическая политика. 2023. № 7 (185). С. 8–25. EDN: WVMBKT
- Клименко В.В., Клименко А.В., Терешин А.Г. На пути к климатической нейтральности: выстоит ли русский лес против энергетики? // Теплоэнергетика. 2024. № 1. С. 5–20. https://doi.org/10.56304/S0040363624010053
- Клименко А.В., Терёшин А.Г., Прун О.Е. Перспективы России в снижении выбросов парниковых газов // Известия РАН. Энергетика. 2023. № 2. С. 3–15. https://doi.org/10.31857/S0002331023020036 EDN: JXOTOM.
- Клименко А.В., Терёшин А.Г., Прун О.Е. Пути снижения выбросов парниковых газов в черной металлургии России // Промышленная энергетика. 2023. № 9. С. 8–19. https://doi.org/10.34831/EP.2023.67.59.002
- Клименко В.В., Терешин А.Г., Коликов К.С., Бернадинер И.М. Перспективы России в снижении выбросов метана и присоединении к Глобальному соглашению по метану // Энергетическая политика. 2023. № 11 (190). С. 56–73. https://doi.org/10.46920/2409-5516_2023_11190_5EDN: TMXGQO
- Башмаков И.А. Стратегия низкоуглеродного развития российской экономики // Вопросы экономики. 2020. № 7. С. 51–74.
- Башмаков И.А. Сценарии движения России к углеродной нейтральности // Энергосбережение. 2023. № 1. С. 40–49.
- Дегтярев К.С., Березкин М.Ю., Синюгин О.А. Оценка инвестиционных затрат на переход к безуглеродной экономике в России к 2060 г. // Окружающая среда и энерговедение. 2022. № 2. С. 29–39.
- Мастепанов А.М. Россия на пути к углеродной нейтральности // Энергетическая политика. 2022. № 1(167). С. 94–108.
- Ланьшина Т.А., Логинова А.Д., Стоянов Д.Е. Переход крупнейших экономик мира к углеродной нейтральности - сферы потенциального сотрудничества с Россией // Вестник международных организаций. 2021. Т. 16. №4. С. 98–125.
- Statistical Review of World Energy 2023. London: Energy Institute, 2023. 64 p.
- Клименко В.В. Влияние климатических и географических условий на уровень потребления энергии // ДАН. 1994. Т. 339. № 3. С. 319–332.
- International Energy Agency. World Energy Outlook 2023. Paris: IEA, 2023. 355 p.
- Canada’s Energy Future 2023: Energy Supply and Demand Projections to 2050. Ottava: Canada Energy Regulator, 2023. 134 p.
- Energy Transition Norway 2022. A National Forecast to 2050 / Ed.: M. Irvine. Høvik, Norway: DNV and Norsk Industri, 2022. 56 p.
- Syed A. Australian Government Energy Projections to 2050 / Kimura, S. and H. Phoumin (eds.), Energy Outlook and Energy Saving Potential in East Asia. ERIA Research Project Report 2014-33, Jakarta: ERIA, 2015. P. 49–68.
- Australian Long Term Emissions Reduction Plan. A whole-of-economy Plan to achieve net zero emissions by 2050. Australian Government Department of Industry, Science, Energy and Resources, 2021.
- Ковалева Н.О., Столпникова Е.М. Экология: жизнь в неустойчивой биосфере // История и современность. 2022. № 4. С. 58–80.
- Клименко В.В., Микушина О.В., Терешин А.Г. Динамика биотических потоков углерода при различных сценариях изменения площади лесов // Известия РАН. Физика атмосферы и океана. 2020. Т. 56. № 4. С. 462–472. https://doi.org/10.31857/S0002351520040033
- Global Status of CCS Report 2021. Melbourne, Australia: Global Carbon Capture and Storage Institute, 2021.
- Global Status of CCS Report 2023. Executive summary. Melbourne, Australia: Global Carbon Capture and Storage Institute, 2023.
- Филиппов С.П., Жданеев О.В. Возможности использования технологий улавливания и захоронения диоксида углерода при декарбонизации мировой экономики (обзор) // Теплоэнергетика. 2022. № 9. С. 5–21. https://doi.org/10.56304/S0040363622090016
- Member State Specific Pathway for NETP Deployment / Editors/Authors: Nixon Sunny, Solene Chiquier, Niall Mac Dowell. London: NEGEM, 2023.
- Freer-Smith P., Muys B., Bozzano M., Drössler L., Farrelly N., Jactel H., Korhonen J., Minotta G., Nijnik M. and Orazio C. Plantation forests in Europe: challenges and opportunities. From Science to Policy 9. European Forest Institute, 2019. https://doi.org/10.36333/fs09
- Rhodes D., Stephens M. Planted forest development in Australia and New Zealand: comparative trends and future opportunities // New Zealand J. of Forest Science. 2014. V. 44 (Suppl 1), S10. https://doi.org/10.1186/1179-5395-44-S1-S10
Supplementary files
