Exact Solutions and Bounds for the Thermal Conductivity Coefficient of a Dispersed Medium
- Autores: Boshenyatov В.V.1
-
Afiliações:
- Institute of Applied Mechanics, Russian Academy of Sciences
- Edição: Volume 515, Nº 1 (2024)
- Páginas: 35-42
- Seção: МЕХАНИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/265879
- DOI: https://doi.org/10.31857/S2686740024020067
- EDN: https://elibrary.ru/KHHSDC
- ID: 265879
Citar
Resumo
Exact solutions for the thermal conductivity coefficient of a two-phase dispersed medium are obtained using the most general physical principles of locality and symmetry. Two solutions define the well-known Hashin–Shtrikman bounds. The third solution, invariant under the phase inversion transformation, significantly narrows the Hashin–Shtrikman boundaries; this is confirmed by comparison with numerous experiments by other authors. It has been shown that taking into account the remote interaction of dispersed particles at their increased concentration only slightly (less than 3%) affects the result.
Sobre autores
В. Boshenyatov
Institute of Applied Mechanics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bosbosh@mail.ru
Rússia, Moscow
Bibliografia
- Li Z. Nanofluidics: An Introduction. CRC Press, 2018. 401 p.
- Бошенятов Б.В. Микропузырьковые газожидкостные среды и перспективы их использования. Saarbrucken: LAP LAМBERT Academic Publishing, 2016. 170 c.
- Torquato S. Random Heterogeneous Materials – Microstructure and Macroscopic Properties. N.Y.: Springer, 2002. P. 403–646.
- Дульнев Г.Н., Новиков В.В. Процессы переноса в неоднородных средах. Л.: Энергоатомиздат. Ленингр. отд-ние, 1991. 248 с.
- Pabst W., Hříbalová S. Describing the effective conductivity of two-phase and multiphase materials via weighted means of bounds and general power means // JOM. 2019. V. 71 (11). Р. 4005–4014. https://doi.org/10.1007/s11837-019-03693-4
- Hashin Z., Shtrikman S. A variational approach to theory of effective magnetic permeability of multiphase materials // J. Appl. Phys. 1962. V. 33 (10). Р. 3125–3131. https://doi.org/10.1063/1.1728579
- Bergman D.J. Еhe dielectric constant of a composite material – a problem in classical physics // Рhysics Reports (Section C of Physics Letters). 1978. V. 43 (9). P. 377–407. https://doi.org/10.1016/0370-1573(78)90009-1
- Felderhof U. Bounds for the effective dielectric constant of a suspension of uniform spheres // J. Phys. C: Solid State Phys. 1982. V. 15. P. 3953–3966. https://doi.org/10.1088/0022-3719/15/18/011
- Бошенятов Б.В. Tеплопроводность пузырьковых газожидкостных сред повышенной концентрации // Вестн. Томского гос. ун-та. Математика и механика. 2017. № 45. С. 69–79. https://doi.org/10.17223/19988621/45/6
- Фокин А.Г. Макроскопическая проводимость случайно-неоднородных сред. Методы расчета // УФН. 1996. Т. 166. № 10. С. 1069–1093.
- Гуськов О.Б., Бошенятов Б.В. Взаимодействие фаз и присоединенная масса дисперсных частиц в потенциальных потоках жидкости // Вестн. Нижегород. ун-та им. Н.И. Лобачевского. 2011. № 4–3. С. 740–741.
- Samantray P.K., Karthikeyan P., Reddy K.S. Estimating effective thermal conductivity of two-phase materials // Intern. J. Heat and Mass Transfer. 2006. V. 49 (21–22). Р. 4209–4219. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.015
- Бошенятов Б.В. К расчету эффективных коэффициентов переноса в монодисперсных суспензиях сферических частиц // Письма в ЖТФ. 2015. Т. 41 (3). C. 67–73.
Arquivos suplementares
