Laser-Induced Ablation and Desorption of Deuterium-Containing Tungsten Films
- Authors: Smirnova E.V.1,2, Medvedev O.S.1,3, Razdobarin A.G.1,2, Elets D.I.1,3,2, Snigirev L.A.1,2, Shubin Y.R.1,2
-
Affiliations:
- A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences
- Saint Petersburg State University
- MEPhI National Research Nuclear University
- Issue: Vol 515, No 1 (2024)
- Pages: 19-26
- Section: ФИЗИКА
- URL: https://journals.rcsi.science/2686-7400/article/view/265877
- DOI: https://doi.org/10.31857/S2686740024020043
- EDN: https://elibrary.ru/KHRXIS
- ID: 265877
Cite item
Abstract
The laser-induced desorption (LID) and laser-induced ablation (LIA) methods are compared with each other regarding the possibility of measurements an absolute quantitative analysis of hydrogen isotopes content in first wall materials of fusion reactors. Deuterium containing tungsten films with a thickness of 300–400 nm on a silicon substrate were used as model samples. To implement the LID, the samples were irradiated with laser pulses with a duration of 200 microseconds and an energy density of 50–150 J/cm2, for LIA – 12 ns and 5–15 J/cm2. The registration of residual gases was carried out by quadrupole mass spectrometry. Computer simulation of laser pulse heating was performed for the LID process. The simulation results and experimental data showed that heating at an energy density of 100–150 J/cm2 is sufficient to degas tungsten films of the studied thickness. A comparison of the amount of desorbed deuterium in the LID (150 J/cm2) and LIA (15 J/cm2) modes shows that it is identical within the measurement error and is equal to 4.15±0.15·1014 cm-2.
About the authors
E. V. Smirnova
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; Saint Petersburg State University
Author for correspondence.
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Saint Petersburg
O. S. Medvedev
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; MEPhI National Research Nuclear University
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Moscow
A. G. Razdobarin
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; Saint Petersburg State University
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Saint Petersburg
D. I. Elets
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; MEPhI National Research Nuclear University; Saint Petersburg State University
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Moscow; Saint Petersburg
L. A. Snigirev
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; Saint Petersburg State University
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Saint Petersburg
Ya. R. Shubin
A.F. Ioffe Physicotechnical Institute, Russian Academy of Sciences; Saint Petersburg State University
Email: evsmirnova@mail.ioffe.ru
Russian Federation, Saint Petersburg; Saint Petersburg
References
- Mukhin E.E. et al. In situ monitoring hydrogen isotope retention in ITER first wall // Nuclear Fusion. 2016. V. 56. № 3. P. 036017. https://doi.org/10.1088/0029-5515/56/3/036017
- Roth J. et al. Tritium inventory in ITER plasma-facing materials and tritium removal procedures // Plasma Physics and Controlled Fusion. 2008. V. 50. № 10. P. 103001. https://doi.org/10.1088/0741-3335/50/10/103001
- Родина Н.Д., Морозова Н.Б., Введенский А.В. Кинетика выделения атомарного водорода и водородопроницаемость сплавов Ag-Pd в щелочной среде // Конденсированные среды и межфазные границы. 2020. Т. 22. № 2. С. 96–104. https://doi.org/10.17308/kcmf.2020.22/2853
- Dellasega D. et al. Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma // J. Nuclear Materials. 2015. V. 463. P. 989–992. doi: 10.1016/j.jnucmat.2014.11.025
- Skinner C.H. Tritium retention and removal in Tokamaks // AIP Conference Proc. American Institute of Physics, 2009. V. 1095. № 1. P. 127–145. https://doi.org/doi: 10.1063/1.3097310
- Krat S.A. et al. A setup for study of co-deposited films // J. Instrumentation. 2020. V. 15. № 1. P. P01011. https://doi.org/10.1088/1748-0221/15/01/P01011
- Rubel M. et al. Efficiency of fuel removal techniques tested on plasma-facing components from the TEXTOR tokamak // Fusion Engineering and Design. 2012. V. 87. № 5–6. P. 935–940. https://doi.org/10.1016/j.fusengdes.2012.02.054
- Katayama K., Nishikawa M., Yamaguchi J. Isotope effect in hydrogen isotope exchange reaction on first wall materials // J. Nuclear Science and Technology. 2002. V. 39. № 4. P. 371–376. https://doi.org/10.1080/18811248.2002.9715206
- Hodille E.A. et al. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach // Nuclear Fusion. 2017. V. 57. № 7. P. 076019. https://doi.org/10.1088/1741-4326/aa6d24
- Moshkunov K.A. et al. Air exposure and sample storage time influence on hydrogen release from tungsten // J. Nuclear Materials. 2010. V. 404. № 3. P. 174–177. https://doi.org/10.1016/j.jnucmat.2010.07.011
- Zlobinski M. et al. Laser induced desorption as tritium retention diagnostic method in ITER // Fusion Engineering and Design. 2011. V. 86. № 6–8. P. 1332–1335. https://doi.org/10.1016/j.fusengdes.2011.02.030
- Paris P. et al. Comparison of LIBS results on ITER-relevant samples obtained by nanosecond and picosecond lasers // Nuclear Materials and Energy. 2019. V. 18. P. 1–5. https://doi.org/10.1016/j.nme.2018.11.018
- Maddaluno G. et al. Detection by LIBS of the deuterium retained in the FTU toroidal limiter // Nuclear Materials and Energy. 2019. V. 18. P. 208–211. https://doi.org/10.1016/j.nme.2018.12.029
- Gierse N. et al. In situ characterisation of hydrocarbon layers in TEXTOR by laser induced ablation and laser induced breakdown spectroscopy // J. Nuclear Materials. 2011. V. 415. № 1. P. S1195–S1198. https://doi.org/10.1016/j.jnucmat.2010.11.055
- Van Der Meiden H.J. et al. Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic // Nuclear Fusion. 2021. V. 61. № 12. P. 125001. https://doi.org/10.1088/1741-4326/ac31d6
- Razdobarin G.T. et al. Detecting dust on plasma-facing components in a next-step tokamak using a laser-induced breakdown spectroscopy technique // Fusion Science and Technology. 2002. V. 41. № 1. P. 32–43. https://doi.org/10.13182/FST02-A198
- Liu J. et al. Study of spectral intensity of the laser ablated tungsten plasma and ablation mass at various laser spot sizes and laser fluence in vacuum environment // Spectrochimica Acta Part B: Atomic Spectroscopy. 2023. V. 199. P. 106569. https://doi.org/10.1016/j.sab.2022.106569
- Zhang D.L. Processing of advanced materials using high-energy mechanical milling // Progress in Materials Science. 2004. V. 49. № 3–4. P. 537–560. https://doi.org/10.1016/S0079-6425(03)00034-3
- Yehia-Alexe S.A. et al. Considerations on hydrogen isotopes release from thin films by laser induced ablation and laser induced desorption techniques // Spectrochimica Acta Part B: Atomic Spectroscopy. 2023. V. 208. P. 106774. https://doi.org/10.1016/j.sab.2023.106774
- Zlobinski M. et al. Laser-Induced Desorption of co-deposited Deuterium in Beryllium Layers on Tungsten // Nuclear Materials and Energy. 2019. V. 19. P. 503–509. https://doi.org/10.1016/j.nme.2019.04.007
- Krat S. et al. Tungsten-deuterium co-deposition: Experiment and analytical description // Vacuum. 2018. V. 149. P. 23–28. https://doi.org/10.1016/j.vacuum.2017.12.004
- Kajita S. et al. Plasma-assisted laser ablation of tungsten: Reduction in ablation power threshold due to bursting of holes/bubbles // Applied Physics Letters. 2007. V. 91. №. 26. https://doi.org/10.1063/1.2824873
Supplementary files
