ELECTRONIC AND MAGNETIC PROPERTIES OF ALLOYS BASED ON THE DIRAC SEMIMETAL Cd3As2 DOPED BY Mn ATOMS WITH THE VARIABLE CONCENTRATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Theoretical studies predict that the low magnetic doping of the Dirac semimetals (DS) leads to the appearance in them of unusual quantum states and properties: the states of Weil semimetals, axionic insulator, topological superconductor and so on. However the specific materials in which these phenomena can be observed, as well as the characteristic concentrations of magnetic atoms are still unknown. In the present work, an ab initio study of the electronic and magnetic properties of the DS Cd3As2 doped isoelectronically with Mn atoms at concentrations of 4, 6, and 8% was performed. When analyzing the results, the main attention is paid to breaking spatial and time reversal symmetry in alloys, the behavior of the electronic structure near the top of the Dirac cone, and the processes of spin ordering in Mn atoms. The results obtained are compared with earlier theoretical and experimental studies, and on their basis a detailed picture of the effect of isoelectronic magnetic doping on the properties of the DS Cd3As2 is given.

About the authors

E. T. Kulatov

Prokhorov General Physics Institute of Russian Academy of Sciences; Lebedev Physical Institute of Russian Academy of Sciences

Author for correspondence.
Email: kulatov@nsc.gpi.ru
Russia, Moscow; Russia, Moscow

Yu. A. Uspenskii

Lebedev Physical Institute of Russian Academy of Sciences

Author for correspondence.
Email: uspenski@td.lpi.ru
Russia, Moscow

References

  1. Armitage N.P., Mele E.J., Vishvanath A. Weyl and Dirac semimetals in three-dimensional solids // Rev. Mod. Phys. 2018. V. 90. №. 1. P. 015001–015057.
  2. Wang S., Lin B.C., Wang A.Q., Yu D.P., Liao Z.M. Quantum Transport in Dirac and Weyl Semimetals: A Review // Adv. Phys.: X. 2017. V. 2. P. 518–544.
  3. Burkov A.A. Topological Semimetal // Nat. Mater. 2016. V. 15. P. 1145–1148.
  4. Wang A.-Q., Ye X.-G., Yu D.-P., Liao Z.M. Topological semimetal nanostructures: from properties to topotronics // ACS Nano. 2020. V. 14. P. 3755–3778.
  5. Liu P., Williams J.R., Cha J.J. Topological Nanomaterials // Nat. Rev. Mater. 2019. V. 4. P. 479–496.
  6. Wang L.X., Li C.Z., Yu D.P., Liao Z.M. Aharonov-Bohm Oscillations in Dirac Semimetal Cd3As2 Nanowires // Nat. Commun. 2016. V. 7. P. 10769–10775.
  7. Yu W., Pan W., Medlin D.L., Rodriguez M.A., Lee S.R., Bao Z.Q., Zhang F. π and 4π Josephson Effects Mediated by a Dirac Semimetal // Phys. Rev. Lett. 2018. V. 120. P. 177704–177709.
  8. Ali M.N., Gibson Q., Jeon S., Zhou B.B., Yazdani A., Cava R.J. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene // Inorg. Chem. 2014. V. 53. P. 4062–4067.
  9. He L.P., Hong X.C., Dong J.K., Pan J., Zhang Z., Zhang J., Li S.Y. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 // Phys. Rev. Lett. 2014. V. 113. P. 246402–246406.
  10. Neupane M., Xu S.-Y., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., Lin H., Bansil A., Chou F., Hasan M.Z., Chang T.-R., Jeng H.-T. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 // Nat. Commun. 2014. V. 5. P. 3786–3793.
  11. Liu Z.K., Jiang J., Zhou B., Wang Z.J., Zhang Y., Weng H.M. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 // Nat. Mater. 2014. V. 13. P. 677–681.
  12. Jeon S., Zhou B.B., Gyenis A., Feldman B.E., Kimchi I., Potter A.C., Gibson Q.D, Cava R.J. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 // Nat. Mater. 2014. V. 13. P. 851–856.
  13. Wang Z., Weng H., Wu Q., Dai X., Fang Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 // Phys. Rev. B. 2013. V. 88. P. 125427–125432.
  14. Kulatov E.T., Uspenskii Yu.A., Oveshnikov L.N., Mekhiya A.B., Davydov A.B., Ril’ A.I., Marenkin S.F., Aronzon B.A. Electronic, magnetic and magnetotransport properties of Mn-doped Dirac semimetal Cd3As2 // Acta Materialia. 2021. V. 219. P. 117249–117258.
  15. Akrap A., Hakl M., Tchoumakov S., Crassee I., Kuba J., Goerbig M.O. et al. Magneto-optical signature of massless Kane electrons in Cd3As2 // Phys. Rev. Lett. 2016. V. 117. P. 136401–136406.
  16. Neubauer D., Carbotte J.P., Nateprov A.A., Löhle A., Dressel M., Pronin A.V. Interband optical conductivity of the [001]-oriented Dirac semimetal Cd3As2 // Phys. Rev. B. 2016. V. 93. P. 121202–121206.
  17. Oveshnikov L.N., Davydov A.B., Suslov A.V., Ril’ A.I., Marenkin S.F., Vasiliev A.L., Aronzon B.A. Superconductivity and Shubnikov-de Haas effect in polycrystalline Cd3As2 thin films // Sci. Rep. 2020. V. 10. P. 4601–4607.
  18. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54 (16). P. 11169–11186.
  19. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77 (18). P. 3865–3868.
  20. Wang V., Xu N., Liu J.C., Tang G., Geng W.T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code // Computer Physics Communications. 2021. V. 267. P. 108033–108051.
  21. Kulatov E.T., Men’shov V.N., Tugushev V.V., Uspen-skii Yu.A. Electron and magnetic properties of three-dimensional magnetic topological insulators Bi2Se3:Cr and Bi2Se3:Fe // Europhysics Letters. 2016. V. 115. P. 67004–67010.
  22. Kulatov E.T., Men’shov V.N., Tugushev V.V., Uspen-skii Yu.A. Features of the electronic structure of the Bi2Se3 topological insulator digitally doped with 3d transition metals // JETP Letters. 2019. V. 109. P. 102–108.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (744KB)
3.

Download (268KB)
4.

Download (1MB)

Copyright (c) 2023 Э.Т. Кулатов, Ю.А. Успенский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».