DETONATION OF A COMBUSTIBLE GAS MIXTURE UPON THE INTERACTION OF A SHOCK WITH AN ELLIPSOIDAL INERT GAS BUBBLE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Interaction of a shock wave in a combustible gas mixture with an ellipsoidal region of an inert gas of increased density is numerically simulated using the Euler equations in two-dimensional plane and axisymmetric formulations. Four qualitatively different regimes of indirect initiation of detonation have been found: upon reflection of a wave from the gas interface, upon focusing of secondary transverse shock waves on the axis/plane of symmetry, upon amplification of a transverse wave converging to the axis of symmetry, and upon secondary focusing of waves in front of the bubble. It is shown that the mode of detonation initiation significantly depends on both the intensity of the shock wave and the shape of the bubble. Based on a series of simulations, the dependence of the threshold Mach numbers of the incident wave on the shape of the bubble is determined. In the plane flow, a moderate elongation of the bubble leads to a significant decrease in the threshold Mach number. In an axisymmetric flow, the lower threshold Mach number is less sensitive to the shape of the bubble, and the most effective detonation initiation is carried out using a spherical bubble. The effect of shock wave focusing makes it possible to achieve successful initiation of detonation at a fundamentally lower intensity of the incident wave compared to direct initiation.

作者简介

P. Georgievskiy

Institute of Mechanics of Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: georgi@imec.msu.ru
Russia, Moscow

O. Sutyrin

Institute of Mechanics of Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: sutyrin@imec.msu.ru
Russia, Moscow

参考

  1. Apazidis N., Eliasson V. Shock focusing phenomena. Springer, 2018.
  2. Georgievskiy P.Y., Levin V.A., Sutyrin O.G. Interaction of a shock with elliptical gas bubbles // Shock Waves. 2015. V. 25. № 4. P. 357–369.
  3. Haehn N., Ranjan D., Weber C., Oakley J., Rothamer D., Bonazza R. Reacting shock bubble interaction // Combustion and Flame. 2012. V. 159. № 3. P. 1339–1350.
  4. Diegelmann F., Hickel S., Adams N.A. Shock mach number influence on reaction wave types and mixing in reactive shock -bubble interaction // Combustion and Flame. 2016. V. 174. P. 85–99.
  5. Diegelmann F., Tritschler V., Hickel S., Adams N. On the pressure dependence of ignition and mixing in two-dimensional reactive shock-bubble interaction // Combustion and Flame. 2016. V. 163. P. 414–426.
  6. Георгиевский П.Ю., Левин В.А., Сутырин О.Г. Детонация горючего газового цилиндра при фокусировке падающей ударной волны // Письма в ЖТФ. 2019. Т. 45. № 23. С. 43–46.
  7. Георгиевский П. Ю., Сутырин О. Г. Инициирование детонации при взаимодействии ударной волны с горючим газовым пузырем // Доклады РАН. Физика, технические науки. 2022. Т. 503. № 1. С. 35–41.
  8. Георгиевский П.Ю., Левин В.А., Сутырин О.Г. Детонация горючей газовой смеси при взаимодействии ударной волны с эллиптической областью тяжелого инертного газа // Письма в ЖТФ. 2021. Т. 47. № 9. С. 21–24.
  9. Korobeinikov V., Levin V. Strong explosion in a combustible gas mixture // Fluid Dynamics. 1969. V. 4. № 6. P. 30–32.
  10. Matsuo A., Fujiwara T. Numerical simulation of shock-induced combustion around an axisymmetric blunt body // Proc. 26th Thermophysics Conference. 1991. P. 1414.
  11. Jiang G.-S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Computational Physics. 1996. V. 126. № 1. P. 202–228.
  12. He Z., Li L., Zhang Y., and Tian B. Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows // Computers & Fluids. 2018. V. 168. P. 190–200.
  13. Haas J.-F., Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities // J. Fluid Mechanics. 1987. V. 181. P. 41–76.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (63KB)
3.

下载 (944KB)
4.

下载 (390KB)
5.

下载 (326KB)
6.

下载 (4KB)
7.

下载 (5KB)
8.

下载 (4KB)
9.

下载 (4KB)
10.

下载 (4KB)
11.

下载 (4KB)
12.

下载 (186KB)

版权所有 © П.Ю. Георгиевский, О.Г. Сутырин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».