DETERMINATION OF THE ELECTRO-OPTICAL COEFFICIENTS OF BARIUM TITANATE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the framework of thermodynamic theory, a method for determining the electro-optical coefficients is proposed. It is shown that for all ferroelectrics whose symmetry admits a diagonal susceptibility, the ratio of some electro-optical coefficients is expressed in terms of the ratio of susceptibilities. For barium titanate, the dependence of the electrooptical coefficients on the electric field has been revealed and studied. It is shown that large values of the electro-optical coefficients of barium titanate are associated with a nonlinear dependence of the dielectric susceptibility on the electric field.

About the authors

V. B. Shirokov

Southern Scientific Center of the Russian Academy of Sciences; Southern Federal University

Email: vkalin415@mail.ru
Russia, Rostov-on-Don; Russia, Rostov-on-Don

P. E. Timoshenko

Southern Federal University

Email: vkalin415@mail.ru
Russia, Rostov-on-Don

V. V. Kalinchuk

Southern Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: vkalin415@mail.ru
Russia, Rostov-on-Don

References

  1. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
  2. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
  3. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения. Т. 2. Долгопрудный: Интеллект, 2012. 784 с.
  4. Alferness R.C. Waveguide Electrooptic Modulators // IEEE Transactions on Microwave Theory and Techniques. 1982. V. 30. P. 1121. https://doi.org/10.1109/TMTT.1982.1131213
  5. Sinatkas G., Christopoulos T., Tsilipakos O., Kriezis E.E. Electro-optic modulation in integrated photonics // J. Appl. Phys. 2021. V. 130. P. 010901. https://doi.org/10.1063/5.0048712
  6. Hisakado Y., Kikuchi H., Nagamura T., Kajiyama T. Large Electrooptic Kerr Effect in Polymer Stabilized Liquid Crystalline Blue Phases // Adv. Mater. 2005. V. 17. P. 96. https://doi.org/10.1063/1.4890031
  7. Shen T.Z., Hong S.H., Song J.K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient // Nat. Mater. 2014. V. 13. P. 394. https://doi.org/10.1038/nmat3888
  8. Karvounis A., Timpu F., Vogler-Neuling V.V., Savo R., Grange R. Barium Titanate Nanostructures and Thin Films for Photonics // Adv. Optical Mater. 2020. V. 8. P. 2001249. https://doi.org/10.1002/adom.202001249
  9. Liu Y., Ren G., Cao T., Mishra R., Ravichandran J. Modeling temperature, frequency, and strain effects on the linear electro-optic coefficients of ferroelectric oxides // J. Applied Physics. 2022. V. 131. P. 163101. https://doi.org/10.1063/5.0090072
  10. Li Y.L., Cross L.E., Chen L.Q. A phenomenological thermodynamic potential for BaTiO3 single crystals // J. Appl. Phys. 2005. V. 98. P. 064101 (1–4). https://doi.org/10.1063/1.2042528
  11. Wang Y.L., Tagantsev A.K., Damjanovic D., Setter N., Yarmarkin V.K., Sokolov A.I., Lukyanchuk I.A. Landau thermodynamic potential for BaTiO3 // J. Appl. Phys. 2007. V. 101. P. 104115 (1–9). https://doi.org/10.1063/1.2733744
  12. Scrymgeour D.A., Gopalan V. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: lithium niobate and lithium tantalate // Physical Review B. 2005. V. 71. P. 184110. https://doi.org/10.1103/PhysRevB.71.184110
  13. Liang L., Li Y.L., Chen L.Q., Hu S.Y., Lu G.H. A thermodynamic free energy function for potassium niobate // Appl. Phys. Lett. 2009. V. 94. P. 072904. https://doi.org/10.1063/1.3081418
  14. Bell A.J., Cross L.E. A phenomenological Gibbs function for BaTiO3 giving correct e field dependence of all ferroelectric phase changes // Ferroelectrics. 1984. V. 59. P. 197–203. https://doi.org/10.1080/00150198408240090
  15. Ma Z., Xi L., Liu H., Zheng F., Gao H., Chen Z., Chen H. Ferroelectric phase transition of BaTiO3 single crystal based on a tenth order Landau-Devonshire potential // Computational Materials Science. 2017. V. 135. P. 109–118. https://doi.org/10.1016/j.commatsci.2017.04.011
  16. Berlincourt D., Jaffe H. Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate // Phys. Rev. 1958. V. 111. P. 143. https://doi.org/10.1103/PhysRev.111.143
  17. Shirokov V., Kalinchuk V., Shakhovoy R., Yuzyuk Y. Anomalies of piezoelectric coefficients in barium titanate thin films // EPL. 2014. V. 108. P. 47008. https://doi.org/10.1209/0295-5075/108/47008
  18. Zgonik M., Bernasconi P., Duelli M., Schlesser R., Gunter P. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals // Phys. Rev. B. 1994. V. 50. P. 5941. https://doi.org/10.1103/PhysRevB.50.5941
  19. Warner A.W., Onoe M., Coquin G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) // The Journal of the Acoustical Society of America. 1967. V. 42. P. 1223. https://doi.org/10.1121/1.1910709
  20. Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey. N.Y.: Springer, 2005. 427 p.
  21. Bierlein J.D. Electrooptic and dielectric properties of KTiOPO4 // Appl. Physics Letters. 1986. V. 49. P. 917. https://doi.org/10.1063/1.97483
  22. Wiesendanger E. Dielectric, mechanical and optical properties of orthorhombic KNbO3 // Ferroelectrics. 1974. V. 6. P. 263. https://doi.org/10.1080/00150197408243977
  23. Широков В.Б., Мухортов В.М., Юзюк Ю.И. Релаксация поляризованных состояний в тонких пленках BST. Известия РАН. Серия физическая. 2012. Т. 76. № 7. С. 904–907. https://doi.org/10.3103/S1062873812070325

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (44KB)
3.

Download (50KB)
4.

Download (57KB)

Copyright (c) 2023 В.Б. Широков, П.Е. Тимошенко, В.В. Калинчук

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».