Bayesian estimates of snow cover area in Eurasia in the 21st century based on the results of calculations with the CMIP6 ensemble of climate models

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on the results of calculations with the ensemble of global climate models CMIP6, quantitative estimates of changes in the area of snow cover in Eurasia in the 21st century were obtained under scenarios SSP2-4.5 and SSP5-8.5 of anthropogenic impacts using the Bayesian averaging. The contribution (weight) of the models to the overall ensemble estimates was determined by accuracy of reproduction of the long-term average, trend, and interannual variability of the snow cover area in Eurasia by satellite data. The largest inter-model variations in estimates, the most significant of which were calculated for the summer and autumn months, are associated with the description of the trend component and inter-annual variability of the snow cover area of Eurasia, as well as with equally weighted averaging. It is shown that when using Bayesian weights, the uncertainty of snow cover area estimates can be halved compared to the ensemble average with equal model weights. The obtained ensemble estimates of the snow cover area using combined Bayesian weights exceed the corresponding estimates for equally weighted averaging.

全文:

受限制的访问

作者简介

M. Arzhanov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: arzhanov@ifaran.ru
俄罗斯联邦, Moscow

I. Mokhov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: arzhanov@ifaran.ru

Academician of the RAS

俄罗斯联邦, Moscow; Moscow

M. Parfenova

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: arzhanov@ifaran.ru
俄罗斯联邦, Moscow

参考

  1. Будыко М. И. Климат в прошлом и будущем. Л.: Гидрометеоиздат, 1980. 351 с.
  2. Мохов И. И. Диагностика структуры климатической системы. СПб.: Гидрометеоиздат, 1993. 271 с.
  3. Кислов А. В. Климат в прошлом, настоящем и будущем. М.: МАИК “Наука/Интерпериодика”, 2001. 351 с.
  4. Barry R., Gan T. Y. The global cryosphere: past, present and future. Cambridge Univ. Press, New York, NY. 2011. 472 p.
  5. Мохов И. И. Гидрологические аномалии и тенденции изменения в бассейне реки Амур в условиях глобального потепления // ДАН. 2014. Т. 455. № 5. С. 585–588.
  6. McCrystall M.R., Stroeve J., Serreze M., Forbes B. C., Screen J. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. // Nat Commun. 2021. V. 12. P. 6765–6777.
  7. Bormann K. J., Brown R. D., Derksen C., Painter T. H. Estimating snow-cover trends from space // Nature Clim Change. 2018. V. 8. P. 924–928.
  8. Zhu X., Lee S.-Y., Wen X., Wei Z., Ji Z., Zheng Z., Dong W. Historical evolution and future trend of Northern Hemisphere snow cover in CMIP5 and CMIP6 models // Environ. Res. Lett. 2021. V. 16. P. 065013.
  9. Robinson D. A., Estilow T. W., and NOAA CDR Program. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. NOAA National Centers for Environmental Information. 2012. doi: 10.7289/V5N014G9.
  10. Hersbach H., Bell D. Berrisford P., Hirahara S., Horanyi A., Munoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R. J., Hólm E., Janiskova M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thepaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146A (730). P. 1999–2049.
  11. Мохов И. И., Парфенова М. Р. Связь площади снежного покрова и морских льдов с температурными изменениями в Северном полушарии по данным для последних десятилетий // Изв. РАН. Физика атмосферы и океана. 2022. Т. 58. № 4. С. 411–423.
  12. Парфенова М. Р., Аржанов М. М., Мохов И. И. Изменения площади снежного покрова в Евразии в XXI веке по расчетам с ансамблем климатических моделей CMIP6 // Изв. РАН. Физика атмосферы и океана. 2023. Т. 59. № 3. C.299–308.
  13. Brown R. D., Derksen C. Is Eurasian October snow cover extent increasing? // Environ. Res. Lett. 2013. V. 8. № 2. P. 1–7.
  14. Santolaria-Otin M., Zolina O. Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models // Clim. Dyn. 2020. V. 55. P. 2993–3016.
  15. Mudryk L. R., Kushner P. J., Derksen C., Thackeray C. Snow cover response to temperature in observational and climate model ensembles // Geophys. Res. Lett. 2017. V. 44. P. 919–926.
  16. Елисеев А. В. Оценка изменения характеристик климата и углеродного цикла в XXI веке с учетом неопределeнности значений параметров наземной биоты // Изв. РАН. Физика атмосферы и океана. 2011. Т. 47. № 2. С. 147–170.
  17. Arzhanov M. M., Eliseev A. V., Mokhov I. I. A glo- bal climate model based, Bayesian climate projection for northern extra–tropical land areas // Global and Planetary Change. 2012. V. 57–65. P. 57–65.
  18. Липавский А. С., Елисеев А. В., Мохов И. И. Байесовы оценки изменения стока Амура и Селенги в XXI веке по результатам ансамблевых модельных расчетов CMIP6 //Метеорология и гидрология. 2022. № 5. С. 64–82.
  19. Парфенова М. Р., Елисеев А. В., Мохов И. И. Изменения периода навигации на Северном морском пути в 21 веке: Байесовы оценки по расчетам с ансамблем климатических моделей // ДАН. Науки о Земле. 2022. Т. 507. № 1. С. 118–125.
  20. Lehner F., Deser C., Maher N., Marotzke J., Fi-scher E. M., Brunner L., Knutti R., Hawkins E. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6 // Earth Syst. Dyn. 2020. V. 11. № 2. P. 491–508.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Normalized Bayesian weights of CMIP6 ensemble models (model numbers see Table 1): W1 (red), W2 (orange), W3 (green) and W4 (blue) for the area of snow cover in Eurasia in 2000-2019 under the scenarios “historical” and SSP2-4.5 (a) and “historical” and SSP5-8.5 (b). The horizontal line corresponds to the weight W0 = 1/N, N is the number of models in the ensemble.

下载 (1MB)
3. Fig. 2. Changes in the area of snow cover (million km2) in Eurasia (sliding 11‑year averages) for different months according to calculations with an ensemble of climate models and the corresponding intra- assembly snow cover area (million km2) in Eurasia in the 21st century. for different months, obtained under scenarios SSP2-4.5 (a) and SSP5- 8.5 (b) using different Bayesian weights: W1 (red), W2 (orange), W3 (green), W4 ( blue), as well as equally weighted with weight W0 (black, hatching) in comparison with CDR satellite data (bold black curve).

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##