Experimental study of solubility of columbite and pyrochlore, tantalum and niobium oxides in alkaline hydrothermal fluids at 300–550°C, 50 and 100 MPa

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The concentration and temperature dependences of the solubility of natural pyrochlore and columbite, tantalum and niobium oxides in alkaline aqueous solutions of NaOH and (mNaF + mNaOH) at 300–550°C, 100 and 50 MPa and low oxygen fugacity (Co-CoO and Ni-NiO buffers) were experimentally studied. . The initial concentration of NaOH varied from 0.01 to 2 m, and the concentration of NaF from 0.01 to 1 m. It has been established that the content of Nb in alkaline solutions in the entire studied range of concentrations is higher than the content of Ta by approximately one and a half orders of magnitude. At the same time, the solubility of pyrochlore in alkaline sodium solutions is noticeably higher than the solubility of columbite, which suggests that Nb is more capable of forming complexes in alkaline solutions, while Ta complexation is mainly suppressed. The solubility of pyrochlore and columbite decreases with increasing temperature. The presence of the F-ion in the form of NaF low concentrations has a positive effect on the solubility of minerals and oxides of Ta and Nb at high temperatures (500–550°C). It has been established that in NaOH solutions, the deposition of Nb is favored by a situation with a decrease in oxygen fugacity (Co-CoO buffer). The study of pressure effect at 50 and 100 MPa on the solubility of pyrochlore, columbite, and oxides of Ta and Nb in sodium alkaline solutions showed that the solubility of pyrochlore increases with increasing pressure. The solubility of columbite does not change much in this case. Thus, a decrease in pressure favors the deposition of Nb in the form of tantalum niobates upon dissolution of pyrochlore. For columbite, there is no such dependence.

Авторлар туралы

N. Kotova

Institute of Experimental Mineralogy, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kotova@iem.ac.ru
Ресей, Chernogolovka

V. Korzhinskaya

Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: kotova@iem.ac.ru
Ресей, Chernogolovka

Yu. Shapovalov

Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: kotova@iem.ac.ru

Corresponding Member of the RAS

Ресей, Chernogolovka

Әдебиет тізімі

  1. Welham J. Enhanced dissolution of tantalite/columbite following milling // International Journal of Mineral Processing. 2001. V. 61. N3. 145–150.
  2. Зарайский Г.П, Чевычелов В. Ю., Аксюк А. М., Коржинская В. С., Котова Н. П. Редькин А. Ф., Бородулин Г. П. Экспериментальное обоснование физико-химической модели генезиса месторождений тантала, связанных с литий-фтористыми гранитами // Экспериментальные исследования эндогенных процессов: Памяти академика В. А. Жарикова. Черноголовка: РИО ИПХФ РАН, 2008. С. 86–109.
  3. Коржинская В. С., Котова Н. П., Шаповалов Ю. Б. Экспериментальное исследование растворимости манган-танталита и Та2О5 в хлоридных растворах // ДАН. 2014. Т. 459. № 2. С. 194–197.
  4. Коржинская В. С., Котова Н. П., Шаповалов Ю. Б. Экспериментальное исследование растворимости природного пирохлора и оксида ниобия в щелочных гидротермальных растворах // ДАН. 2017. Т. 475. № 2. С. 191–194
  5. Котова Н. П., Коржинская В. С., Шаповалов Ю. Б. Экспериментальное исследование растворимости природных танталита и пирохлора, оксидов тантала и ниобия в гидротермальных фторидно-хлоридных растворах // Доклады Российской Академии наук. Науки о Земле. 2022. Т. 505. № 1. С. 30–37. doi: 10.31857/S2686739722070106
  6. Лукьянова Е. В., Акинфиев Н. Н., Зотов А. В., Расс И. Т., Котова Н. П., Коржинская В. С. Ниобий в гидротермальных системах: термодинамическое описание гидроксо- и гидроксофторидных комплексов // Геология рудных месторождений. 2017. Т. 59. № 4. С. 308–318.
  7. Удоратина О. В., Зарайский Г. П. Проблема генезиса редкометальных месторожденй Полярного Урала (Тайкеуский рудный узел) // Петрология и минералогия севера Урала и Тимана. Сыктывкар. 2005. Вып. 3. С. 140–153.
  8. Akinfiev N., Korzhinskaya V., Kotova N., Redkin A., Zotov A. Niobium and tantalum in hydrothermal fluids: Thermodynamic description of hydroxide and hydroxofluoride complexes // Geochimica et Cosmochimica Acta. 2020. V. 280. P. 102–105 (IF-4.659).
  9. Zaraisky G. P., Korzhinskaya V. S., Soboleva Yu. B. Experimental estimation of hydrothermal transport of Ta and Nb in connection with the problem of tantalum deposits genesis in “apogranites.” Electr Sci Inform J “Herald of the Department of Earth Sciences RAS” № 1(22) 2004. URL: http://www.scgis.ru/russian/cp1251/ h_dgggms/1-2004/informbul-1_2004/hydroterm-18e.pdf
  10. Zaraisky G. P., Korzhinskaya V. S., Kotova N. P. The problem of hydrothermal transport of tantalum and niobium in “apogranites” on experimental data // Understanding the genesis of ore deposites: To meet the demand of th 1th centery. 12th quadrennial IAGOD Symposium, Moscow, 21–24 August, 2006. CD-043.
  11. Zaraisky G. P., Korzhinskaya V. S., Kotova N. P. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550oC and 50 to 100 MPa // J. Mineral Petrol. 2010. V. 99. № 3/4. P. 287–300.

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>