The Blake geomagnetic excursion recorded in the Mikulino Interglacial sediments of the Neva Lowland

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the first results of a detailed rock magnetic and paleomagnetic research of the Mga marine interglacial sediments of the Mikulino (Eemian) Interglacial (the Upper Pleistocene) in the Etalon section (former Sverdlov Factory, Leningrad Region). The Blake geomagnetic excursion was determined in the upper part of the Mga formation according to a shallow inclination of the characteristic remanent magnetization (ChRM) component. Age of the Blake excursion was obtained as 117 ± 7 ka applying optically stimulated luminescence (OSL) dating. The results obtained are in good agreement with other Blake Event records. The ChRM in the Mga sediments is related to syngenetically formed biogenic greigite produced by magnetotactic bacteria.

About the authors

V. I. Dudanova

Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: roman.veselovskiy@ya.ru

Geological faculty

Russian Federation, Moscow; Moscow

R. V. Veselovskiy

Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: roman.veselovskiy@ya.ru

Geological faculty

Russian Federation, Moscow; Moscow

M. V. Ruchkin

Saint Petersburg State University; Karpinsky Russian Geological Research Institute

Email: roman.veselovskiy@ya.ru

Institute of Earth Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

M. V. Sheetov

Karpinsky Russian Geological Research Institute

Email: roman.veselovskiy@ya.ru
Russian Federation, Saint Petersburg

References

  1. Бахмутов В. Г., Евзеров В. Я., Колька В. В. Палеомагнетизм ленточных глин: седиментогенез и запись вековых вариаций // Физика Земли. 2009. № 7. С. 25–41.
  2. Максимов Ф. Е., Савельева Л. А., Попова С. С., Зюганова И. С., Григорьев В. А., Левченко С. Б., Петров А. Ю., Фоменко А. П., Панкратова Л. А., Кузнецов В. Ю. Хроностратиграфическое положение микулинских отложений (на примере опорного разреза у д. Нижняя Боярщина, Смоленская область) // Известия РАН. Серия Географическая. 2022. Т. 86. № 3. С. 447–469.
  3. Laj C., Channell J. E.T. Geomagnetic Excursions // Treatise on Geophysics. 2007. V. 5. P. 373–416. https://doi.org/10.1016/B978-044452748-6.00095-X
  4. Храмов А. Н., Гончаров Г. И., Комиссарова Р. А., Писаревский С. А., Погарская И. А., Ржевский Ю. С., Родионов В. П., Слауцитайс И. П. Палеомагнитология. Л.: Недра. 1982. 312 с.
  5. Tauxe L. Essentials of paleomagnetism. University of California Press. 2010.
  6. Veselovskiy R. V., Dubinya N. V., Ponomarev A. V., Fokin I. V., Patonin A. V., Pasenko A. M., Fetisova A. M., Matveev M. A., Afinogenova N. A., Rud’ko D.V., Chistyakova A. V. Shared Research Facilities “Petrophysics, Geomechanics and Paleomagnetism” of the Schmidt Institute of Physics of the Earth RAS // Geodynamics & Tectonophysics. 2022. V. 13 (2). 579. https://doi.org/10.5800/GT-2022-13-2-0579
  7. Ефремов И. В., Веселовский Р. В. PMTools: новое программное обеспечение для анализа палеомагнитных данных // Физика Земли. 2023. № 5. С. 150‒158.
  8. Wintle A. G. Luminescence dating: laboratory procedures and protocols // Radiation Measurements. 1997. V. 27 (5–6). P. 769–817. https://doi.org/10.1016/S1350-4487(97)00220-5
  9. Buylaert J.-P., Murray A. S., Thomsen K. J., Jain M. Testing the potential of an elevated temperature IRSL signal from K-feldspar // Radiation Measurements. 2009. V. 44 (5). P. 560–565. https://doi.org/10.1016/j.radmeas.2009.02.007
  10. Durcan J. A., King G. E., Duller G. A.T. DRAC: Dose Rate and Age Calculator for trapped charge dating // Quaternary Geochronology. 2015. V. 28. P. 54– 61. https://doi.org/10.1016/j.quageo.2015.03.012
  11. Huntley D. J., Lamothe M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating // Canadian Journal of Earth Sciences. 2001. V. 38 (7). P. 1093–1106. https://doi.org/10.1139/e01–013
  12. Сhang L., Vasiliev I., Baak vaan C., Krijgsman W., Dekkers M. J., Roberts A. P., Fitz Gerald J. D., Hoesel van A., Winklhofer M. Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea // Geochemistry, Geophysics, Geosystems. 2014. V. 15 (9). P. 3612–3627. https://doi.org/10.1002/2014GC005411
  13. Большаков В. А., Долотов А. В. Магнитные свойства грейгита из отложений позднего неоплейстоцена Северного Каспия // Физика Земли. 2012. № 6. C. 56–73.
  14. Kirschvink J. L. The least-square line and plane and the analysis of paleomagnetic data // Geophysical Journal International. 1980. V. 62 (3), P. 699–718. https://doi.org/10.1111/j.1365–246X.1980.tb02601.x
  15. Merrill R. T., McFadden P. L. Geomagnetic field stability: Reversal events and excursions // Earth and Planetary Science Letters. 1994. V. 121. P. 57–69.
  16. Osete M.-L., Javier M.-C., Rossi C., Edwards L., Egli R., Munoz-Garcia M.B., Wang X., Pavon-Carrasco J., Heller F. The Blake geomagnetic excursion recorded in a radiometrically dated speleothem // Earth and Planetary Science Letters. 2012. V. 353–354, P. 173–181. https://doi.org/10.1016/j.epsl.2012.07.041
  17. Zhu R.X, Zhou L.P, Laj C., Mazaud A., Ding Z. L. The Blake geomagnetic polarity episode recorded in Chinese loess // Geophysical Research Letters. 1994. V. 21 (8). P. 697–700. https://doi.org/10.1029/94GL00532

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies