HYPOTHESIS ON THE REASONS FOR STRONG VARIABILITY CONCENTRATIONS OF IMPURITIES IN NATURAL WATERS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A hypothesis has been put forward about the formation of an increased dispersion of the concentration of substances polluting the water of the river flow under the influence of internal synergistic factors. The effect is manifested in the dispersion of controlled quality indicators, exceeding their average value, which in practice makes it difficult to manage water use. An assumption is made that such a dispersion is a consequence of the nonlinearity of systems that are far from thermodynamic equilibrium. It is possible that the driving force in this case is the turbophoresis of impurity particles in a turbulent, as a rule, water flow.

About the authors

V. I. Danilov-Danilyan

Institute of Water Problems, Russian Academy of Sciences

Author for correspondence.
Email: vidd38@yandex.ru
Russian Federation, Moscow

O. M. Rozenthal

Institute of Water Problems, Russian Academy of Sciences

Email: vidd38@yandex.ru
Russian Federation, Moscow

References

  1. Gaillardet J., Viers J., Dupre B. Trace Elements in River Waters // Treatise on Geochemistry. V. 5. Ed.: J.I. Drever. Elsevier, 2003. 605 p.
  2. Thanh Thuy Nguyen, Keupers I., Willems P. Conceptual river water quality model with flexible model structure // Environmental Modelling and Software. 2018. V. 104. P. 102–117.
  3. Theakstone W.H. Temporal variations of isotopic composition of glacier-river water during summer: observations at Austre Okstindbreen, Okstindan, Norway // J. of Glaciology. 1988. V. 34. № 118. P. 309–317.
  4. Агеев И.М., Рыбин Ю.М., Шишкин Г.Г. Медленные вариации электропроводности дистиллированной воды / Вестник МГУ. Серия 3. Физика. Астрономия. 2016. № 6. С. 54–59.
  5. РД 52.24.634–2002. Уточнение местоположения створов (пунктов) наблюдений и режимов отбора проб на основе использования трассерных методов изучения гидродинамических характеристик водных объектов // https://meganorm.ru/Data2/1/4293848/4293848865.pdf
  6. РД 52.24.309–2016. Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши // https://files.stroyinf.ru/Data2/1/4293748/4293748080.pdf
  7. Мандельброт Б. Фрактальная геометрия природы. М.: ИКИ, 2002. 656 с.
  8. Николис Г., Пригожин И. Познание сложного. М.: Мир, 1990. 344 с.
  9. Danilov-Danilyan V.I., Rosenthal O.M. The properties of natural waters determined by their microstructural self-organization // Water Resources. 2021. V. 48 (2). P. 254–262.
  10. Розенталь О.М., Подкин Ю.Г. Диэлектрический фрикционный эффект при переносе электролита в водной среде // ДАН. Геохимия. 2015. Т. 462. № 5. С. 587–589.
  11. Clop E.M., Perillo M.A., Chattah A.K. 1H and 2H NMR spin-lattice relaxation probing water: PEG molecular dynamics in solution // J. Phys. Chem. B. 2012. Oct. 4. 116 (39). P. 11953–8.
  12. Родникова М.Н. Об упругости пространственной сетки водородных связей в жидкостях и растворах // Структурная самоорганизация в растворах и на границе раздела фаз. М.: ЛКИ, 2008. 544 с.
  13. Sawford B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion [13// Phys. Fluids A. 1991. V. 3. P. 1577–1586.
  14. Danilov-Danilyan V.I., Rosenthal O.M. Dynamic Model of Water Quality Evolution // J. of Water Chemistry and Technology. 2022. V. 44. № 2. P. 132–138.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (98KB)
3.

Download (62KB)
4.

Download (51KB)

Copyright (c) 2023 В.И. Данилов-Данильян, О.М. Розенталь

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies