HYPOTHESIS ON THE REASONS FOR STRONG VARIABILITY CONCENTRATIONS OF IMPURITIES IN NATURAL WATERS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A hypothesis has been put forward about the formation of an increased dispersion of the concentration of substances polluting the water of the river flow under the influence of internal synergistic factors. The effect is manifested in the dispersion of controlled quality indicators, exceeding their average value, which in practice makes it difficult to manage water use. An assumption is made that such a dispersion is a consequence of the nonlinearity of systems that are far from thermodynamic equilibrium. It is possible that the driving force in this case is the turbophoresis of impurity particles in a turbulent, as a rule, water flow.

Sobre autores

V. Danilov-Danilyan

Institute of Water Problems, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vidd38@yandex.ru
Russian Federation, Moscow

O. Rozenthal

Institute of Water Problems, Russian Academy of Sciences

Email: vidd38@yandex.ru
Russian Federation, Moscow

Bibliografia

  1. Gaillardet J., Viers J., Dupre B. Trace Elements in River Waters // Treatise on Geochemistry. V. 5. Ed.: J.I. Drever. Elsevier, 2003. 605 p.
  2. Thanh Thuy Nguyen, Keupers I., Willems P. Conceptual river water quality model with flexible model structure // Environmental Modelling and Software. 2018. V. 104. P. 102–117.
  3. Theakstone W.H. Temporal variations of isotopic composition of glacier-river water during summer: observations at Austre Okstindbreen, Okstindan, Norway // J. of Glaciology. 1988. V. 34. № 118. P. 309–317.
  4. Агеев И.М., Рыбин Ю.М., Шишкин Г.Г. Медленные вариации электропроводности дистиллированной воды / Вестник МГУ. Серия 3. Физика. Астрономия. 2016. № 6. С. 54–59.
  5. РД 52.24.634–2002. Уточнение местоположения створов (пунктов) наблюдений и режимов отбора проб на основе использования трассерных методов изучения гидродинамических характеристик водных объектов // https://meganorm.ru/Data2/1/4293848/4293848865.pdf
  6. РД 52.24.309–2016. Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши // https://files.stroyinf.ru/Data2/1/4293748/4293748080.pdf
  7. Мандельброт Б. Фрактальная геометрия природы. М.: ИКИ, 2002. 656 с.
  8. Николис Г., Пригожин И. Познание сложного. М.: Мир, 1990. 344 с.
  9. Danilov-Danilyan V.I., Rosenthal O.M. The properties of natural waters determined by their microstructural self-organization // Water Resources. 2021. V. 48 (2). P. 254–262.
  10. Розенталь О.М., Подкин Ю.Г. Диэлектрический фрикционный эффект при переносе электролита в водной среде // ДАН. Геохимия. 2015. Т. 462. № 5. С. 587–589.
  11. Clop E.M., Perillo M.A., Chattah A.K. 1H and 2H NMR spin-lattice relaxation probing water: PEG molecular dynamics in solution // J. Phys. Chem. B. 2012. Oct. 4. 116 (39). P. 11953–8.
  12. Родникова М.Н. Об упругости пространственной сетки водородных связей в жидкостях и растворах // Структурная самоорганизация в растворах и на границе раздела фаз. М.: ЛКИ, 2008. 544 с.
  13. Sawford B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion [13// Phys. Fluids A. 1991. V. 3. P. 1577–1586.
  14. Danilov-Danilyan V.I., Rosenthal O.M. Dynamic Model of Water Quality Evolution // J. of Water Chemistry and Technology. 2022. V. 44. № 2. P. 132–138.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (98KB)
3.

Baixar (62KB)
4.

Baixar (51KB)

Declaração de direitos autorais © В.И. Данилов-Данильян, О.М. Розенталь, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies