Anti-tumor effect of high doses of carbon ions and x-rays during irradiation of Ehrlich ascites carcinoma cells ex vivo

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of carbon ions (12C) with the energy of 400 MeV/nucleon on the dynamics of induction and growth rate of solid tumors in mice under irradiation of Ehrlich’s ascites carcinoma cells (EAC) ex vivo at doses of 5–30 Gy relative to the action of equally effective doses of X-ray radiation was studied. The dynamics of tumor induction under the action of 12C and X-rays had a similar character and depended on the dose during 3 months of observation. The value of the latent period, both when irradiating cells with 12C and X-ray, increased with increasing dose, and the interval for tumor induction decreased. The rate of tumor growth after ex vivo irradiation of EAC cells was independent of either dose or type of radiation. The dose at which EAC tumors are not induced within 90 days was 30 Gy for carbon ions and 60 Gy for X-rays. The value of the relative biological effectiveness of carbon ions, calculated from an equally effective dose of 50% probability of tumors, was 2.59.

全文:

受限制的访问

作者简介

V. Balakin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: belyakovata@lebedev.ru

Corresponding Member, Branch “Physical-Technical Center” 

俄罗斯联邦, Protvino

Т. Belyakova

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: belyakovata@lebedev.ru

Branch “Physical-Technical Center”

俄罗斯联邦, Protvino

О. Rozanova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: belyakovata@lebedev.ru
俄罗斯联邦, Pushchino

E. Smirnova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: belyakovata@lebedev.ru
俄罗斯联邦, Pushchino

N. Strelnikova

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: belyakovata@lebedev.ru

Branch “Physical-Technical Center”

俄罗斯联邦, Protvino

Е. Кузнецова

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: belyakovata@lebedev.ru
俄罗斯联邦, Pushchino

参考

  1. Yamada S., Takiyama H., Isozaki Y., et al. Carbon-ion Radiotherapy for Colorectal Cancer // J. Anus. Rectum Colon. 2021. V. 5. № 2. P. 113–120.
  2. Malouff T.D., Mahajan A., Krishnan S., et al. Carbon Ion Therapy: A Modern Review of an Emerging Technology// Front. Oncol. 2020. V. 10:82.
  3. Durante M., Debus J., Loeffler J.S. Physics and biomedical challenges of cancer therapy with accelerated heavy ions // Nat. Rev. Phys. 2021. Vol. 3. № 12. P. 777—790.
  4. Desouky O., Zhou G. Biophysical and radiobiological aspects of heavy charged particles // Journal of Taibah University for Science. 2015. Vol. 10. P. 187–194.
  5. Saager M., Glowa C., Peschke P., et al. Split dose carbon ion irradiation of the rat spinal cord: Dependence of the relative biological effectiveness on dose and linear energy transfer // Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2015. Vol. 117. P. 358–363.
  6. Elsasser T., Weyrather W.K., Friedrich T., et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning // Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 78. P. 1177–1183.
  7. Batlle E., Clevers H. Cancer stem cells revisited // Nat. Med. 2017. Vol. 23. P. 1124–1134.
  8. Dzobo K., Senthebane D.A., Ganz C., et al. Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: an updated review // Cells. 2020. Vol. 9, № 8.
  9. Chang L., Graham P., Hao J., et al. Cancer stem cells and signaling pathways in radioresistance // Oncotarget. 2016. Vol. 7. № 10. P. 11002–11017.
  10. Mishra S., Tamta A.K., Sarikhani M., et al. Subcutaneous Ehrlich ascites carcinoma mice model for studying cancer-induced cardiomyopathy // Scientific reports. 2018. Vol. 8. № 1. Published 2018 Apr 4.
  11. Balakin V.E., Rozanova O.M., Smirnova E.N., et al. Growth induction of solid Ehrlich ascitic carcinoma in mice after proton irradiation of tumor cells ex vivo // Doklady Biochemistry and biophysics. 2023. Vol.511. № 1. P. 151–155.
  12. Заичкина С.И., Розанова О.М., Смирнова Е.Н. и др. Оценка биологической эффективности ускоренных ионов углерода с энергией 450 МэВ/нуклон в ускорительном комплексе У-70 по критерию выживаемости мышей // Биофизика. 2019. Т. 64. № 6, С. 1208–1215.
  13. Koch R.A., Boucsein M., Brons S., et al. A time-resolved clonogenic assay for improved cell survival and RBE measurements // Clinical and translational radiation oncology. 2023. Vol. 42.
  14. Brownstein J.M., Wisdom A.J., Castle K.D., et al. Characterizing the potency and impact of carbon ion therapy in a primary mouse model of soft tissue sarcoma // Mol. Cancer Ther. 2018. Vol. 17. № 4. P. 858–868.
  15. Sai S., Wakai T., Vares G., et al. Combination of carbon ion beam and gemcitabine causes irreparable DNA damage and death of radioresistant pancreatic cancer stem-like cells in vitro and in vivo // Oncotarget. 2015. Vol. 6. № 8. P. 5517–5535.
  16. Комарова Л.Н., Мельникова А.А., Балдов Д.А. Синергические эффекты комбинированного действия ионов углерода и химиопрепарата доксорубицин на раковых клетках линии HeLa // Известия высших учебных заведений. Ядерная энергетика. 2021. № 3, С. 158–168.
  17. Glowa C., Karger C.P., Brons S., et al. Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors // Cancer Letters. 2016. Vol. 378. № 2. P. 97–103.
  18. Chiblak S., Tang Z., Campos B., et al. Radiosensitivity of patient-derived glioma stem Cell 3-dimensional cultures to photon, proton, and carbon irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2016. Vol. 95. № 1. P. 112–119.
  19. Sai S., Suzuki M., Kim E.H., et al. Effects of carbon ion beam alone or in combination with cisplatin on malignant mesothelioma cells in vitro // Oncotarget. 2017. Vol. 9. № 19. P. 14849–14861.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dynamics of the appearance of tumors in mice after inoculation of ACE cells irradiated with: (a) carbon ions in the dose range of 5–30 Gy; (b) RI in doses of 20–60 Gy.

下载 (165KB)
3. Fig. 2. Dynamics of tumor growth in mice after inoculation of a suspension of ACE cells irradiated with 12C: (a) average relative tumor volumes depending on the days after tumor appearance; (b) The data in (a) are presented as the number of days for the tumor volume to increase 5 times the first measured volume. Volumes are normalized to the first measured volume ≥0.40 cm3. Statistical significance from the control group was assessed using the Mann–Whitney U test (* p ≤ 0.01).

下载 (119KB)
4. Fig. 3. Dynamics of tumor growth in mice after inoculation of a suspension of ACE cells irradiated with RR: (a) average relative tumor volumes depending on the days after tumor appearance; (b) The data in (a) are presented as the number of days for tumor volume to increase fivefold from the first volume measured. Volumes are normalized to the first measured volume ≥0.40 cm3. Statistical significance from the control group was assessed using the Mann–Whitney U test (* p ≤ 0.01).

下载 (125KB)
5. Fig. 4. Dependence of the number of mice without tumors on the dose of 12C and RI 90 days after inoculation of irradiated cells.

下载 (49KB)

版权所有 © Russian Academy of Sciences, 2024
##common.cookie##