ACTIVITY OF NSP14 EXONUCLEASE FROM SARS-COV-2 TOWARDS RNAS WITH MODIFIED 3'-TERMINI

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The COVID-19 pandemic has shown the urgent need for new treatments for coronavirus infections. Nucleoside analogs have been successfully used to inhibit replication of some viruses, through the incorporation into the growing DNA or RNA chain. However, the replicative machinery of coronaviruses contains nsp14, a a non-structural protein with a 3'→5'-exonuclease activity that removes misincorporated and modified nucleotides from the 3' end of the growing RNA chain. Here we studied the efficiency of hydrolysis of RNA containing various modifications in the 3'-terminal region by SARS-CoV-2 nsp14 exonuclease and its complex with the auxiliary protein nsp10. Single-stranded RNA was a preferable substrate compared to double-stranded, consistent with the model of transfer of the substrate strand to the exonuclease active site proposed on the basis of structural analysis. Modifications of the phosphodiester bond between the penultimate and last nucleotides had the greatest effect on nsp14 activity.

作者简介

S. Yuyukina

Novosibirsk State University; Institute of Chemical Biology and Fundamental Medicine SB RAS

编辑信件的主要联系方式.
Email: sonyayuyukina@gmail.com
Russian, Novosibirsk; Russian, Novosibirsk

A. Barmatov

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: dzharkov@niboch.nsc.ru
Russian, Novosibirsk

S. Bizyaev

Novosibirsk State University; Institute of Cytology and Genetics SB RAS; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS

Email: dzharkov@niboch.nsc.ru
Russian, Novosibirsk; Russian, Novosibirsk; Russian, Novosibirsk

D. Stetsenko

Novosibirsk State University; Institute of Cytology and Genetics SB RAS

Email: dzharkov@niboch.nsc.ru
Russian, Novosibirsk; Russian, Novosibirsk

O. Sergeeva

Skolkovo Institute of Science and Technology

Email: dzharkov@niboch.nsc.ru
Russian, Moscow

T. Zatsepin

Skolkovo Institute of Science and Technology; Department of Chemistry, Lomonosov Moscow State University

Email: dzharkov@niboch.nsc.ru
Russian, Moscow; Russian, Moscow

D. Zharkov

Novosibirsk State University; Institute of Chemical Biology and Fundamental Medicine SB RAS

编辑信件的主要联系方式.
Email: dzharkov@niboch.nsc.ru
Russian, Novosibirsk; Russian, Novosibirsk

参考

  1. Su S., Wong G., Shi W., et al. // Trends Microbiol. 2016. V. 24. № 6. P. 490–502.
  2. Jayk Bernal A., Gomes da Silva M.M., Musungaie D.B., et al. // N. Engl. J. Med. 2022. V. 386. № 6. P. 509–520.
  3. Bravo J.P.K., Dangerfield T.L., Taylor D.W., John-son K.A. // Mol. Cell. 2021. V. 81. № 7. P. 1548–1552.
  4. Shannon A., Selisko B., Le N.-T.-T., et al. // Nat. Commun. 2020. V. 11. 4682.
  5. Ferron F., Subissi L., Silveira De Morais A.T., et al. // Proc. Natl Acad. Sci. U.S.A. 2018. V. 115. № 2. P. E162–E171.
  6. Bouvet M., Imbert I., Subissi L., et al. // Proc. Natl Acad. Sci. U.S.A. 2012. V. 109. № 24. P. 9372–9377.
  7. Ma Y., Wu L., Shaw N., et al. // Proc. Natl Acad. Sci. U.S.A. 2015. V. 112. № 30. P. 9436–9441.
  8. Zuo Y., Deutscher M.P. // Nucleic Acids Res. 2001. V. 29. № 5. P. 1017–1026.
  9. Liu C., Shi W., Becker S.T., et al. // Science. 2021. V. 373. № 6559. P. 1142–1146.
  10. Челобанов Б.П., Буракова Е.А., Прохорова Д.В., и др. // Биоорган. химия. 2017. Т. 43. № 6. С. 644–649.
  11. Miroshnichenko S.K., Patutina O.A., Burakova E.A., et al. // Proc. Natl Acad. Sci. U.S.A. 2019. V. 116. № 4. P. 1229–1234.
  12. Minskaia E., Hertzig T., Gorbalenya A.E., et al. // Proc. Natl Acad. Sci. U.S.A. 2006. V. 103. № 13. P. 5108–5113.
  13. Ogando N.S., Zevenhoven-Dobbe J.C., van der Meer Y., et al. // J. Virol. 2020. V. 94. № 23. e01246-20.
  14. Yan L., Yang Y., Li M., et al. // Cell. 2021. V. 184. № 13. P. 3474–3485.e11.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (121KB)
3.

下载 (1MB)
4.

下载 (162KB)
##common.cookie##