SIMULATED MICROGRAVITY CHANGES THE NUMBER OF MECHANICALLY GATED AND MECHANOSENSITIVE ION CHANNELS GENES TRANSCRIPTS IN RAT VENTRICULAR CARDIOMYOCYTES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The mechanoelectrical feedback in the heart is based on the work of mechanically gated (MGCs) and mechanosensitive (MSCs) channels. Since microgravity alters the heart’s morphological and physiological properties, we hypothesized that the expression of both MGCs and MSCs would be affected. We employed RNA transcriptome sequencing to investigate changes in the gene transcript levels of MGCs and MSCs in isolated rat ventricular cardiomyocytes under control conditions and in a simulated microgravity environment. For the first time, our findings demonstrated that simulated microgravity induces alterations in the gene transcript levels of specific MGCs, such as TRPM7, TRPV2, TRPP1, TRPP2, Piezo1, TMEM63A, TMEM36B, and known MSCs, including K2P2.1, K2P3.1, Kir6.1, Kir6.2, NaV1.5, CaV1.2, KV7.1. However, other voltage-gated channels and channels lacking a voltage sensor remained unaffected. These findings suggest that the altered expression of MGCs and MSCs could lead to changes in the net currents across the membrane, ultimately impacting the heart’s function.

Sobre autores

Andre Kamkin

Pirogov Russian National Research Medical University

Autor responsável pela correspondência
Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Vitaliy Kalashnikov

State Scientific Center of Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Boris Shenkman

State Scientific Center of Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Mitko Mladenov

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Pavel Sutyagin

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Valentin Zolotarev

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Alexandra Zolotareva

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Anastasia Rodina

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Viktor Kazansky

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Olga Kamkina

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Vadim Mitrokhin

Pirogov Russian National Research Medical University

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Oleg Orlov

State Scientific Center of Russian Federation Institute of Biomedical Problems, Russian Academy of Sciences

Email: andre.gleb.kamkin@gmail.com
Russian Federation, Moscow

Bibliografia

  1. Ravens U. // Prog. Biophys. Mol. Biol. 2003. V. 82 (1–3). P. 255–266.
  2. Craelius W., Chen V., El-Sherif N. // Biosci. Reports. 1988. V. 8 (5). P. 407–414.
  3. Kamkin A., Kiseleva I., Wagner K.D., et al. // J. Mol. Cell. Cardiol. 2000. V. 32 (3). P. 465–477.
  4. Kiseleva I., Kamkin A., Wagner K.D., et al. // Cardiovasc. Res. 2000. V. 45 (2). P. 370–378.
  5. Kamkin A., Kiseleva I., Isenberg G. // Cardiovasc. Res. 2000. V. 48 (3). P. 409–420.
  6. Kamkin A., Kiseleva I., Isenberg G. // Pflugers Archiv. 2003. V. 446 (2). P. 220–231.
  7. Zhang Y.H., Youm J.B., Sung H.K., et al. // J. Physiol. 2000. V. 523 (3). P. 607–619.
  8. Kamkin A., Kiseleva I., Wagner K.D., et al. // Pflugers Arch. 2003. V. 446 (3). P. 339–346.
  9. Liu C., Zhong G., Zhou Y., et al. // Cell Prolif. 2020. V. 53 (3). P. e12783.
  10. White R.J., Blomqvist C.G. // J. Appl. Physiol. 1998. V. 85 (2). P. 738–746.
  11. Herault S., Fomina G., Alferova I., et al. // Eur. J. Appl. Physiol. 2000. V. 81 (5). P. 384–390.
  12. Goldstein M.A., Edwards R.J., Schroeter J.P. // J. Appl. Physiol. (1985). 1992. V. 73 (2 Suppl). P. 94S–100S.
  13. Kashihara H., Haruna Y., Suzuki Y., Kawakubo K., et al. // Acta Physiol. Scand. (Suppl.) 1994. V. 616. P. 19–26.
  14. Zhong G., Li Y., Li H., et al. // Front. Physiol. 2016. V. 7: Art. 274.
  15. Kamkin A.G., Kamkina O.V., Shim A.L., et al. // Physiol. Rep. 2022. V. 10 (7): Art. e15246.
  16. Hanaoka K., Qian F., Boletta A., et al. // Nature 2000. V. 408 (6815). P. 990–994.
  17. Delmas P., Nauli S.M., Li X., et al. // FASEB J. 2004. V. 18 (6). P. 740–742.
  18. Yan H., Helman G., Murthy S.E., et al. // Am. J. Hum. Genet. 2019. V. 105 (5). P. 996–1004.
  19. Wu D., Xu L., Cai W.M., et al. // J. Biol. Chem. 2023. V. 299 (1). P. 102781.
  20. Marques M.C., Albuquerque I.S., Vaz S.H., et al. // Biochemistry. 2019. V. 58 (26). P. 2861–2866.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (156KB)

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies