Study of the role of long non-coding RNA ROX in maintaining of the dosage compensation complex in Drosophila melanogaster

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The proteins MSL1, MSL2, MSL3, MLE, MOF and non-coding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that non-coding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, it still remains unclear the role of this RNA in maintaining the structure of the already assembled complex. In this work, we have shown that the full-assembled complex of dosage compensation dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components, MSL1, MSL2 and MSL3, undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the non-coding RNA roX2 not only in the processes of initiation of CDK assembly, but also at the stage of maintaining the structure of the already assembled complex.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Babosha

Institute of Gene Biology RAS

Хат алмасуға жауапты Автор.
Email: v.babosha@gmail.com
Ресей, Moscow

P. Georgiev

Institute of Gene Biology RAS

Email: v.babosha@gmail.com

Academician of the RAS

Ресей, Moscow

O. Maksimenko

Institute of Gene Biology RAS

Email: maksog@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Samata M., Akhtar A. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs // Annual Review of Biochemistry. 2018. Vol. 87. Dosage Compensation of the X Chromosome. № 1. P. 323–350.
  2. Kuroda M. I., Hilfiker A., Lucchesi J. C. Dosage Compensation in Drosophila-a Model for the Coordinate Regulation of Transcription // Genetics. 2016. V. 204. № 2. С. 435–450.
  3. Straub T., Grimaud C., Gilfillan G. D., et al. The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex // PLoS genetics. 2008. V. 4. № 12. P. e1000302.
  4. Meller V. H., Rattner B. P. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex // The EMBO Journal. 2002. V. 21. № 5. P. 1084–1091.
  5. Maenner S., Müller M., Fröhlich J., et al. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins // Molecular Cell. 2013. V. 51. № 2. P. 174–184.
  6. Ilik I. A., Quinn J. J., Georgiev P., et al. Tandem Stem Loops in roX RNAs Act Together to Mediate X Chromosome Dosage Compensation in Drosophila // Molecular cell. 2013. V. 51. № 2. P. 156–173.
  7. Li F., Schiemann A. H., Scott M. J. Incorporation of the noncoding roX RNAs alters the chromatin-binding specificity of the Drosophila MSL1/MSL2 complex // Molecular and Cellular Biology. 2008. V. 28. № 4. P. 1252–1264.
  8. Kelley R. L.,, Lee O.-K., Shim Y.-K. Transcription rate of noncoding roX1 RNA controls local spreading of the Drosophila MSL chromatin remodeling complex // Mechanisms of development. 2008. V. 125. № 11–12. P. 1009–1019.
  9. Morra R., Smith E. R., Yokoyama R., Lucchesi J. C. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting // Molecular and Cellular Biology. 2008. V. 28. № 3. P. 958–966.
  10. Johansson A.-M., Stenberg P., Larsson J. msl2 mRNA is bound by free nuclear MSL complex in Drosophila melanogaster // Nucleic Acids Research. 2011. V. 39. № 15. P. 6428–6439.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Identification of CDK components in a sucrose gradient of 10-40%. (a) Lysate without nuclease treatment , with VNC. (b) Lysate treated with RNase A. (c) Lysate treated with RNase III. Immunoblot analysis was performed with antibodies specifically recognizing the proteins MSL1, MSL2, MSL3, and MLE. The numbers of the collected fractions are marked from 1 to 13 (from "heavy" to "light").

Жүктеу (445KB)
3. Fig. 2. (a) The results of immunoprecipitation of nuclear extracts isolated from S2 cell culture with antibodies specifically recognizing the MSL2 and MSL3 proteins, or with rabbit immunoglobulins G (negative control). The extracts underwent 3 types of treatment: 1) without nucleases, treated with a non-specific RNase inhibitor VNC, 2) with the addition of RNase A, 3) with the addition of RNase III. Immunoprecipitates were analyzed using immunoblot analysis for the presence of MSL1 protein in the samples. ‘input’ is the initial extract; IP–MSL2 is a sample after immunoprecipitation with antibodies specifically recognizing the MSL2 protein; IP-MSL3 is a sample after immunoprecipitation with antibodies specifically recognizing the MSL3 protein; IP–IgG is a sample after immunoprecipitation with rabbit immunoglobulins G. (b) Detection of roX2 RNA in fractions obtained after analytical ultracentrifugation in a sucrose gradient of 10-40% nuclear extract from S2 cell culture. The dotted line marks the background level. The standard deviations are based on the results of the

Жүктеу (438KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>