AN INCREASE IN THE INFECTIVITY OF THE HUMAN IMMUNODEFICIENCY VIRUS WITH MODIFICATION OF THE CCR5 GENE RECEPTOR OF SENSITIVE CELLS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Identification of a natural mutation of the ccr5 gene in humans which makes them resistant to HIV-1 infection, has opened a new direction for the development of alternative treatment approaches through genome editing. The human immunodeficiency virus, when infecting CD4+ cells, uses one of two chemokine co-receptors of the plasma membrane. During infection and in the early stages of infection, strains using the CCR5 protein circulate, while the later ones use the CXCR4 protein. It cannot be ruled out that there is a complex relationship in the regulation of the expression of these receptors, which in turn can affect the replication of the virus in cells that normally do not have the CCR5 protein on the membrane. To study the effect of ccr5 gene correction on HIV-1 replication in the in vitro system, exactly like this MT-4 cell line was used. The study of virus replication showed that genetic modification of the ccr5 gene of MT-4 cells led to an increase in the activity of the studied HIV-1 strains, and this increase was most pronounced in homozygous variant. Our results indicate that editing the genome of human cells should be treated with great caution and that such studies require in-depth and comprehensive study.

About the authors

D. N. Nosik

The D.I. Ivanovsky Institute of Virology, The N.F. Gamaleya National Research Center of Epidemiology and Microbiology

Author for correspondence.
Email: dnnosik@yandex.ru
Russian Federation, Moscow

L. B. Kalnina

The D.I. Ivanovsky Institute of Virology, The N.F. Gamaleya National Research Center of Epidemiology and Microbiology

Email: dnnosik@yandex.ru
Russian Federation, Moscow

L. M. Selimova

The D.I. Ivanovsky Institute of Virology, The N.F. Gamaleya National Research Center of Epidemiology and Microbiology

Email: dnnosik@yandex.ru
Russian Federation, Moscow

A. V. Pronin

The D.I. Ivanovsky Institute of Virology, The N.F. Gamaleya National Research Center of Epidemiology and Microbiology

Email: dnnosik@yandex.ru
Russian Federation, Moscow

References

  1. Allen A.G., Chung C.H., Atkins A., et al. Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection // Front. Microbiol. 2018. V. 9. P. 2940–2953.
  2. Allers K., Hutter G., Hofmann J., et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation // Blood. 2011. V. 117. P. 2791–2799.
  3. Drake M.J. and Bate P. Application of gene editing technologies to HIV-1 // Curr. Opin. HIV AIDS. 2015. V. 10 (2). P. 123–127.
  4. Miyoshi I., Kubonishi I., Yoshimoto S., et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells // Nature. 1981. V. 294. P. 770–771.
  5. Manns A., Hisada M., and La Grenade L. Human T-lymphotropic virus type I infection // Lancet. 1999. V. 353. P. 1951–8.
  6. Селимова Л.М., Калнина Л.Б., Носик Д.Н. Поверхностные маркеры неопластической клеточной линии МТ-4 и перспективы ее использования в качестве модели при изучении активности иммуномодулирующих препаратов // Клиническая лабораторная диагностика. 2016. № 12. С. 822–5.
  7. Kang X., He W., Huang Y., et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing // Assist. Reprod. Genet. 2016. V. 33 (5). P. 581–588.
  8. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. V. 65. P. 55–63.
  9. Kestens L., Vanham G., Vereecken C. et al. Selective increase of activation antigens HLA-DR and CD38 on CD4 + CD45RO + T lymphocytes during HIV-1 infection // Clin. Exp. Immunol. 1994. V. 95. P. 436–41.
  10. Esensten J.H., Helou Y.A., Chopra G. et al. CD28 costimulation: from mechanism to therapy // Immunity. 2016. V. 44 (5). P. 973–88.
  11. Voss T.G., Fermin C.D., Levy J.A., et al. Alteration of intracellular potassium and sodium concentrations with induction of cytopathic effects by human immunodeficiency virus // J.Virol. 1996. V. 70. P. 5447–54.
  12. Matsuyama T., Hamamoto N., Yoshida T., et al. Effect of culture supernatant of MT-2 cells on human immunodeficiency virus-producing cells, MOLT-4/HIVHTLV-IIIB cells // Jpn. J. Cancer Res. 1988 Feb; 79 (2): 156–159.
  13. Shioda T., Nakayama E.E., Tanaka Y., et al. Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5. J. Virol. 2001. V. 75 (7). P. 3462–3468.
  14. Kindberg E., Mickiene A., Ax C., et al. A deletion in the chemokine receptor5 (CCR5) gene is associated with tickborne encephalitis // The Journal of Infectious Diseases. 2008. V. 197. P. 266–269.
  15. Glass W.G., McDermott D.H., Lim J.K., et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection // The Journal of Experimental Medicine. 2006. 203 (1). P. 35–40.
  16. Меллинг К. Вирусы: Скорее друзья, чем враги. Пер. с англ.-М.: Альпина Паблишер, 2021. 568 с. ISBN 978-5-9614-6948-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (180KB)
3.

Download (99KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies