INVESTIGATION OF THE INTRACELLULAR DISTRIBUTION OF DOXORUBICIN IN MCF-7 HUMAN BREAST ADENOCARCINOMA CELLS BY THE METHOD OF CORRELATIVE SCANNING FLUORESCENT PROBE NANOTOMOGRAPHY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of technologies for effective targeted drug delivery for oncotherapy requires the elaboration of new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. This paper presents a new approach to three-dimensional analysis of intracellular distribution of cytostatics using fluorescence scanning optical-probe nanotomography technology. Correlative analysis of nanostructure and distribution of injected doxorubicin in studied MCF-7 human breast adenocarcinoma cells made it possible to reveal the features of drug penetration and accumulation in cells. The developed technology based on the principles of scanning optical probe nanotomography is applicable to study the distribution patterns of various fluorescent or fluorescence-labelled substances in cells and tissues.

About the authors

O. I. Agapova

Shumakov National Medical Research Center of Transplantology and Artificial Organs

Email: igor_agapov@mail.ru
Russian, Moscow

I. I. Agapov

Shumakov National Medical Research Center of Transplantology and Artificial Organs

Author for correspondence.
Email: igor_agapov@mail.ru
Russian, Moscow

V. A. Oleinikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: igor_agapov@mail.ru
Russian, Moscow; Russian, Moscow

A. V. Lyundup

Рeoples’ Friendship University of Russia (RUDN University)

Email: igor_agapov@mail.ru
Russian, Moscow

D. V. Yakovlev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: igor_agapov@mail.ru
Russian, Moscow

E. A. Markvicheva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: igor_agapov@mail.ru
Russian, Moscow

A. M. Gileva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: igor_agapov@mail.ru
Russian, Moscow

D. O. Solovyeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: igor_agapov@mail.ru
Russian, Moscow

K. E. Mochalov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: igor_agapov@mail.ru
Russian, Moscow

A. E. Efimov

Shumakov National Medical Research Center of Transplantology and Artificial Organs

Email: igor_agapov@mail.ru
Russian, Moscow

S. V. Gautier

Shumakov National Medical Research Center of Transplantology and Artificial Organs; Sechenov University

Email: igor_agapov@mail.ru
Russian, Moscow; Russian, Moscow

References

  1. Ross L.E., Dykstra M. Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. 2nd Edition, Springer Science & Business Media. 2011. 534 p.
  2. Deng X., Xiong F., Li X., et al. Application of atomic force microscopy in cancer research. // J Nanobiotechnol. 2018. V. 16. P. 102.
  3. Hell S.W. Microscopy and its focal switch // Nature Methods. 2008. V. 6. № 1. P. 24–32.
  4. Caplan J., Niethammer M., Taylor R.M.II, et al. The Power of Correlative Microscopy: Multi-modal, Multi-scale, Multi-dimensional // Curr Opin Struct Biol. 2011. V. 21 № 5. P. 686–693.
  5. Narang A., Desai D. Anticancer Drug Development In: Pharmaceutical Perspectives of Cancer Therapeutics. Lu Y., Mahato R.I., Eds. Springer. 2009. P. 49–92.
  6. Hay M., Thomas D.W., Craighead J.L., et al. Clinical development success rates for investigational drugs // Nat. Biotechnol. 2014. V. 32. P. 40–51.
  7. Garnacho C. Intracellular Drug Delivery: Mechanisms for Cell Entry // Curr Pharm Des. 2016. V. 22. № 9. P. 1210–1226.
  8. Efimov A.E., Agapov I.I., Agapova O.I., et al. A novel design of a scanning probe microscope integrated with an ultramicrotome for serial block-face nanotomog-raphy // Review of Scientific Instruments. 2017. V. 88. P. 023701.
  9. Агапова О.И., Ефимов А.Е., Сафонова Л.А., и др. Сканирующая оптическо-зондовая нанотомография для исследования структуры биоматериалов и клеток // Доклады Российской академии наук. Науки о жизни. 2021. Т. 500. № 1. С. 483–487.
  10. Mochalov K.E., Chistyakov A.A., Solovyeva D.O. et al. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography // Ultramicroscopy. 2017. V. 182. P. 118–123.
  11. Hölscher H. AFM, Tapping Mode. In: Bhushan B. (eds.) Encyclopedia of Nanotechnology. Springer, Dordrecht. 2012. P. 99.
  12. Zankel A., Wagner J., Poelt P. Serial sectioning methods for 3D investigations in materials science // Micron. 2014. V. 62. P. 66–78.
  13. Efimov A.E., Agapova O.I., Safonova L.A. et al. 3D scanning probe nanotomography of tissue spheroid fibroblasts interacting with electrospun polyurethane scaffold. // Express Polymer Letters. 2019. V. 13(3). P. 632–641.
  14. Matsko N., Mueller M. AFM of Biological Material Embedded in Epoxy Resin // J Struct Biol. 2004. V. 146. P. 334–343.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies