Myocardial injury in COVID-19 and cardiac arrhythmias in acute and long-term periods

封面

如何引用文章

全文:

详细

Epidemiologic data indicate that up to 30% of individuals surviving the acute phase of COVID-19 experience persistent cardiovascular symptoms, including dyspnea, chest pain and discomfort, palpitations, exercise intolerance, pathological fatigue, and sleep disturbances. Numerous investigations worldwide have shown that patients, regardless of age, race, sex, or cardiovascular risk factors, remain at increased risk for cardiovascular complications after recovery from COVID-19, including new-onset or progressive inflammatory heart diseases, heart failure, myocardial infarction, ischemic heart disease, cardiomyopathy, thromboembolism, cardiac arrhythmias, and ischemic stroke. SARS-CoV-2 not only induces direct cardiomyocyte injury or damages other cardiovascular system cells but also causes systemic inflammation and coagulopathy, which may exacerbate comorbid cardiovascular diseases. Functional and instrumental diagnostic methods have revealed various forms of subclinical and clinical cardiac injury in most patients with post-COVID syndrome, regardless of the severity of the acute COVID-19 phase or coexisting conditions. The high prevalence of post-COVID cardiovascular syndrome underscores the need for a comprehensive, multidisciplinary approach to diagnosis, treatment, and rehabilitation. Authors of published investigations, meta-analyses, and systematic reviews consistently emphasize the importance of monitoring cardiovascular status for at least one year after recovery from infection.

This review article highlights the need to investigate the pathophysiology of post-COVID cardiovascular syndrome to identify potential therapeutic targets and develop targeted treatment strategies.

作者简介

Sergey Sсherbak

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN 代码: 1537-9822

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Dmitry Vologzhanin

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN 代码: 7922-7302

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Stanislav Makarenko

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40 of Kurortny District

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN 代码: 8114-3984
俄罗斯联邦, Saint Petersburg; Saint Petersburg

Aleksandr Golota

Saint-Petersburg City Hospital № 40 of Kurortny District

编辑信件的主要联系方式.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN 代码: 7234-7870

MD, Cand. Sci. (Medicine), Assistant Professor

俄罗斯联邦, Saint Petersburg

Tatyana Kamilova

Saint-Petersburg City Hospital № 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN 代码: 2922-4404

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

参考

  1. Zhang T, Li Z, Mei Q, et al. Cardiovascular outcomes in long COVID-19: a systematic review and meta-analysis. Front Cardiovasc Med. 2025;12:1450470. doi: 10.3389/fcvm.2025.1450470 EDN: GSUHEJ
  2. Šerý O, Dziedzinska R. Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review. Physiol Res. 2024;73(S3):S655–S669. doi: 10.33549/physiolres.935476 EDN: XCVLFJ
  3. Chidambaram V, Kumar A, Sadaf MI, et al. COVID-19 in the initiation and progression of atherosclerosis: pathophysiology during and beyond the acute phase. JACC Adv. 2024;3(8):101107. doi: 10.1016/j.jacadv.2024.101107 EDN: DLXVEB
  4. O’Mahoney LL, Routen A, Gillies C, et al. The prevalence and long-term health effects of long COVID among hospitalised and non-hospitalised populations: a systematic review and meta-analysis. EClinicalMedicine. 2023;55:101762. doi: 10.1016/j.eclinm.2022.101762 EDN: KUBUIW
  5. Amir-Kabirian B, Annie FH, Koontz M, Ihle R. Sinus tachycardia following COVID-19 and its implications. Cureus. 2024;16(3):e57320. doi: 10.7759/cureus.57320 EDN: UURDPX
  6. Hărșan ST, Sin AI. The involvement and manifestations of SARS-CoV-2 virus in cardiovascular pathology. Medicina. 2025;61(5):773. doi: 10.3390/medicina61050773
  7. Lu JY, Lu JY, Wang SH, et al. New-onset cardiovascular diseases post SARS-CoV-2 infection in an urban population in the Bronx. Sci Rep. 2024;14(1):31451. doi: 10.1038/s41598-024-82983-7 EDN: SPGOZZ
  8. Kułach A, Kucio M, Majewski M, et al. 24 h Holter monitoring and 14-day intermittent patient-activated heart rhythm recording to detect arrhythmias in symptomatic patients after severe COVID-19: a prospective observation. J Clin Med. 2025;14(8):2649. doi: 10.3390/jcm14082649
  9. Rus M, Ardelean AI, Andronie-Cioara FL, Filimon GC. Acute myocardial infarction during the COVID-19 pandemic: long-term outcomes and prognosis: a systematic review. Life (Basel). 2024;14(2):202. doi: 10.3390/life14020202 EDN: EMPOAZ
  10. Sabit H, Arneth B, Altrawy A, et al. Genetic and epigenetic intersections in COVID-19-associated cardiovascular disease: emerging insights and future directions. Biomedicines. 2025;13(2):485. doi: 10.3390/biomedicines13020485 EDN: UVSQIQ
  11. Gyöngyösi M, Alcaide P, Asselbergs FW, et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint scientific statement of the ESC working groups on cellular biology of the heart and myocardial and pericardial diseases. Cardiovasc Res. 2023;119(2):336–356. doi: 10.1093/cvr/cvac115 EDN: RTNTNO
  12. Huseynov A, Akin I, Duerschmied D, Scharf RE. Cardiac arrhythmias in post-COVID syndrome: prevalence, pathology, diagnosis, and treatment. Viruses. 2023;15(2):389. doi: 10.3390/v15020389 EDN: GWXCZY
  13. Fairweather DL, Beetler DJ, Di Florio DN, et аl. COVID-19, myocarditis and pericarditis. Circ Res. 2023;132(10):1302–1319. doi: 10.1161/CIRCRESAHA.123.321878 EDN: BDCSXS
  14. Brinkmann M, Brämer D, Katschinski DM, Burek K. Autoantibody development is associated with clinical severity of COVID-19: a cohort study. Clin Immunol. 2025;274:110471. doi: 10.1016/j.clim.2025.110471 EDN: BTGBNW
  15. Steiner S, Kratzel A, Tuba BG, et al. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol. 2024;22(4):206–225. doi: 10.1038/s41579-023-01003-z EDN: AODQPN
  16. McGonagle D, Giryes S. An immunology model for accelerated coronary atherosclerosis and unexplained sudden death in the COVID-19 era. Autoimmun Rev. 2024;23(11):103642. doi: 10.1016/j.autrev.2024.103642 EDN: ESIQFL
  17. Blagov AV, Kalmykov VA, Rakitin AL, et al. Cytokines are the basis of the development and suppression of inflammation in atherosclerosis. Rev Cardiovasc Med. 2025;26(3):26421. doi: 10.31083/RCM26421 EDN: BVWVQT
  18. Nanavaty D, Sinha R, Kaul D, et al. Impact of COVID-19 on acute myocardial infarction: a national inpatient sample analysis. Curr Probl Cardiol. 2024;49(1 Pt A):102030. doi: 10.1016/j.cpcardiol.2023.102030 EDN: TFNRTO
  19. Elnagdy MH, Magdy A, Eldars W, et al. Genetic association of ACE2 and TMPRSS2 polymorphisms with COVID-19 severity; a single centre study from Egypt. Virol J. 2024;21(1):27. doi: 10.1186/s12985-024-02298-x EDN: LRTFOC
  20. Faustine I, Marteka D, Malik A, et al. Genotype variation of ACE and ACE2 genes affects the severity of COVID-19 patients. BMC Res Notes. 2023;16(1):194. doi: 10.1186/s13104-023-06483-z EDN: OAUOBT
  21. Matuozzo D, Talouarn E, Marchal A, et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med. 2023;15(1):22. doi: 10.1186/s13073-023-01173-8 EDN: HRDWMQ
  22. Kovalenko E, Shaheen L, Vergasova E, et al. GWAS and polygenic risk score of severe COVID-19 in Eastern Europe. Front Med. 2024;11:1409714. doi: 10.3389/fmed.2024.1409714 EDN: YPPORG
  23. Wang RS, Maron BA, Loscalzo J. Multiomics network medicine approaches to precision medicine and therapeutics in cardiovascular diseases. Arterioscler Thromb Vasc Biol. 2023;43(4):493–503. doi: 10.1161/ATVBAHA.122.318731 EDN: PKXZGE
  24. Tsampasian V, Bäck M, Bernardi M, et al. Cardiovascular disease as part of long COVID: a systematic review. Eur J Prev Cardiol. 2025;32(6):485–498. doi: 10.1093/eurjpc/zwae070 EDN: QLXRCO
  25. Dey A, Vaishak K, Deka D, et al. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection. 2023;51(6):1603–1618. doi: 10.1007/s15010-023-02017-8 EDN: ZNKWBW
  26. Bouchard BA, Colovos C, Lawson MA, et al. Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19. Vasc Pharmacol. 2022;142:106950. doi: 10.1016/j.vph.2021.106950 EDN: XKGEQV
  27. Askari N, Hadizadeh M, Rashidifar M. A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2. Infect Genet Evol. 2022;97:105195. doi: 10.1016/j.meegid.2021.105195 EDN: VIWJOI
  28. Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol. 2023;104(11):001918. doi: 10.1099/jgv.0.001918 EDN: PDYOMN
  29. Lam IC, Zhang R, Man KK, et al. Persistence in risk and effect of COVID-19 vaccination on long-term health consequences after SARS-CoV-2 infection. Nat Commun. 2024;15(1):1716. doi: 10.1038/s41467-024-45953-1 EDN: RQTMWS
  30. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. doi: 10.1093/eurheartj/ehac031 EDN: BUMBLW
  31. Wan EY, Mathur S, Zhang R, et al. Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: a prospective cohort in UK Biobank. Cardiovasc Res. 2023;119(8):1718–1727. doi: 10.1093/cvr/cvac195 EDN: XSPKLD
  32. Idris Fadul AA, Osman Mohamed AA, Mohammed Ahmed AA, et al. Post-coronavirus Disease 2019 (COVID-19) cardiovascular manifestations: a systematic review of long-term risks and outcomes. Cureus. 2025;17(4):e83083. doi: 10.7759/cureus.83083
  33. Shrestha AB, Neupane K, Sedhai YR, et al. Long COVID syndrome and cardiovascular manifestations: a systematic review and meta-analysis. Diagnostics. 2023;13(3):491. doi: 10.3390/diagnostics13030491 EDN: OVFDHT
  34. Cha C, Baek G. Symptoms and management of long COVID: a scoping review. J Clin Nurs. 2024;33(1):11–28. doi: 10.1111/jocn.16150 EDN: KTNVCQ
  35. Joy G, Artico J, Kurdi H, et al. Prospective case-control study of cardiovascular abnormalities 6 months following mild COVID in healthcare workers. JACC Cardiovasc Imaging. 2021;14(11):2155–2166. doi: 10.1016/j.jcmg.2021.04.011 EDN: JBJJYX
  36. Rajah MM, Bernier A, Buchrieser J, Schwartz O. The mechanism and consequences of SARS-CoV-2 spike-mediated fusion and syncytia formation. J Mol Biol. 2022;434(6):167280. doi: 10.1016/j.jmb.2021.167280 EDN: HPFGSE
  37. Vidula MK, Rajewska-Tabor J, Cao JJ, et al. Myocardial injury on CMR in patients with COVID-19 and suspected cardiac involvement. JACC Cardiovasc Imaging. 2023;16(5):609–624. doi: 10.1016/j.jcmg.2022.10.021 EDN: REKKBF
  38. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–590. doi: 10.1038/s41591-022-01689-3 EDN: GXZXAU
  39. Mooren FC, Böckelmann I, Waranski M, et al. Autonomic dysregulation in long-term patients suffering from post-COVID-19 syndrome assessed by heart rate variability. Sci Rep. 2023;13(1):15814. doi: 10.1038/s41598-023-42615-y EDN: XSBJDQ
  40. Ferreira ÁA, Abreu RM, Teixeira RS, et al. Applicability of heart rate variability for cardiac autonomic assessment in long-term COVID patients: a systematic review. J Electrocardiol. 2024;82:89–99. doi: 10.1016/j.jelectrocard.2023.12.002 EDN: UHJZXI
  41. Stufano A, Isgrò C, Palese LL, et al. Oxidative damage and post-COVID syndrome: a cross-sectional study in a cohort of Italian workers. Int J Mol Sci. 2023;24(8):7445. doi: 10.3390/ijms24087445 EDN: RVSNVY
  42. Acosta-Ampudia Y, Monsalve DM, Rojas M, et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J Infect Dis. 2022;225(12):2155–2162. doi: 10.1093/infdis/jiac017 EDN: QWFMZM
  43. Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long-COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi: 10.1183/13993003.00970-2022 EDN: TVJRZP
  44. Dobrowolska K, Zarębska-Michaluk D, Poniedziałek B, et al. Overview of autoantibodies in COVID-19 convalescents. J Med Virol. 2023;95(6):e28864. doi: 10.1002/jmv.28864 EDN: AVNGJV
  45. Shu H, Zhao C, Wang DW. Understanding COVID-19-related myocarditis: pathophysiology, diagnosis, and treatment strategies. Cardiol Plus. 2023;8(2):72–81. doi: 10.1097/CP9.0000000000000046 EDN: ASCKVK
  46. Markousis-Mavrogenis G, Vartela V, Pepe A, et al. Cardiovascular magnetic resonance reveals cardiac inflammation and fibrosis in symptomatic patients with post-COVID-19 syndrome: findings from the INSPIRE-CMR multicenter study. J Clin Med. 2024;13(22):6919. doi: 10.3390/jcm13226919 EDN: LHCFTD
  47. Yilmaz M, Mirzaoğlu Ç. Retrospective cohort study: severe COVID-19 leads to permanent blunted heart rate turbulence. Diagnostics. 2025;15(5):621. doi: 10.3390/diagnostics15050621 EDN: BDVNXC
  48. Garcia-Zamora S, Picco JM, Lepori AJ, et al. Abnormal echocardiographic findings after COVID-19 infection: a multicenter registry. Int J Cardiovasc Imaging. 2023;39(1):77–85. doi: 10.1007/s10554-022-02706-9 EDN: NUSNGA
  49. Vlase CM, Gutu C, Goroftei RE, et al. Echocardiographic left ventricular function in the third year after COVID-19 hospitalization: a follow-up pilot study in South-East of Romania. Medicina. 2025;61(2):333. doi: 10.3390/medicina61020333 EDN: UQGHKC
  50. Haunhorst S, Bloch W, Javelle F, et al. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients: indications for their potential involvement in the development of long COVID? Front Immunol. 2022;13:1070994. doi: 10.3389/fimmu.2022.1070994 EDN: IFBBUI
  51. Melhorn J, Alamoudi A, Mentzer AJ, et al. Persistence of inflammatory and vascular mediators 5 months after hospitalization with COVID-19 infection. Front Med. 2023;10:1056506. doi: 10.3389/fmed.2023.1056506 EDN: UKDWQL
  52. Ioannou GN, Baraff A, Fox A, et al. Rates and factors associated with documentation of diagnostic codes for Long COVID in the national veterans affairs health care system. JAMA Network Open. 2022;5(7):e2224359. doi: 10.1001/jamanetworkopen.2022.24359 EDN: YXRVOL
  53. Tsampasian V, Elghazaly H, Chattopadhyay R, et al. Risk factors associated with post-COVID-19 condition: a systematic review and meta-analysis. JAMA Int Med. 2023;183(6):566–580. doi: 10.1001/jamainternmed.2023.0750 EDN: BNSYQB
  54. Thompson EJ, Williams DM, Walker AJ, et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat Commun. 2022;13(1):3528. doi: 10.1038/s41467-022-30836-0 EDN: IBNCLD
  55. Vosko I, Zirlik A, Bugger H. Impact of COVID-19 on cardiovascular disease. Viruses. 2023;15(2):508. doi: 10.3390/v15020508 EDN: PILXAJ
  56. Rosenblatt AG, Ayers CR, Rao A, et al. New-onset atrial fibrillation in patients hospitalized with COVID-19: results from the American Heart Association COVID-19 cardiovascular registry. Circ Arrhythmia Electrophysiol. 2022;15(5):e010666. doi: 10.1161/CIRCEP.121.010666 EDN: AZNKGB
  57. Mahmoudi E, Mollazadeh R, Mansouri P, et al. Ventricular repolarization heterogeneity in patients with COVID-19: original data, systematic review, and meta-analysis. Clin Cardiol. 2022;45(1):110–118. doi: 10.1002/clc.23767 EDN: VQSUZY
  58. Reynbakh O, Braunstein ED, Hsu M, et аl. Arrhythmia patterns during and after hospitalization for COVID-19 infection detected via patch-based mobile cardiac telemetry. Am Heart J Plus Cardiol Res Pract. 2022;13:100084. doi: 10.1016/j.ahjo.2022.100084 EDN: ULMYHK
  59. Hamdy RM, Samy M, Mohamed HS. Clinical utility of ambulatory ECG monitoring and 2D-ventricular strain for evaluation of post-COVID-19 ventricular arrhythmia. BMC Cardiovasc Disord. 2024;24(1):429. doi: 10.1186/s12872-024-03982-0 EDN: VTRZLS
  60. Ingul CB, Grimsmo J, Mecinaj A, et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J Am Heart Assoc. 2022;11(3):e023473. doi: 10.1161/JAHA.121.023473 EDN: POJJNA
  61. Zuin M, Rigatelli G, Roncon L, et al. Risk of incident atrial fibrillation after COVID-19 infection: a systematic review and meta-analysis. Heart Rhythm. 2024;21(9):1613–1620. doi: 10.1016/j.hrthm.2024.04.064 EDN: ARFGVU
  62. Fedorowski A, Fanciulli A, Raj SR, et al. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol. 2024;21(6):379–395. doi: 10.1038/s41569-023-00962-3 EDN: UGIAXV
  63. Johansson M, Ståhlberg M, Ricci F, et al. Blood pressure regulation in post-COVID POTS: beyond sinus tachycardia. Hypertension. 2024;81(12): 2540–2548. doi: 10.1161/HYPERTENSIONAHA.124.23670 EDN: ENSNWU
  64. Groppelli A, Rivasi G, Fedorowski A, et al. Interventions aimed to increase average 24-h systolic blood pressure reduce blood pressure drops in patients with reflex syncope and orthostatic intolerance. Europace. 2024;26(2):euae026. doi: 10.1093/europace/euae026 EDN: FNTQKM
  65. Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and long-COVID thrombosis: from clinical and basic science to therapeutics. Thromb Haemost. 2024;124(4):286–296. doi: 10.1055/s-0043-1776713 EDN: OSUKSY
  66. Maggialetti N, Torrente A, Lazzari P, et al. Coronary calcifications as a new prognostic marker in COVID-19 patients: role of CT. Eur Rev Med Pharmacol Sci. 2023;27(5):2173–2181. doi: 10.26355/eurrev_202303_31590
  67. Gupta P, Gupta S, Bansal S, Balakrishnan I. Cardiac troponin in hospitalized COVID-19 patients: incidence, predictors, and outcomes. Ann Clin Biochem. 2024;61(4):255–264. doi: 10.1177/00045632231216599 EDN: SSMJJS
  68. Yaluri N, Stančáková Yaluri A, Žeňuch P, et al. Cardiac biomarkers and their role in identifying increased risk of cardiovascular complications in COVID-19 patients. Diagnostics. 2023;13(15):2508. doi: 10.3390/diagnostics13152508 EDN: VXGMOP
  69. Chen AL, Robbins M, Masters S, et al. Examining the role of thromboelastography in patients with COVID-19. Perfusion. 2025;2676591251340967. doi: 10.1177/02676591251340967
  70. Kartiko S, Koizumi N, Yamane D, et al. Thromboelastography parameters do not discriminate for thrombotic events in hospitalized patients with COVID-19. J Intensive Care Med. 2023;38(5):449–456. doi: 10.1177/08850666221142265 EDN: YDBERL
  71. Hossam Abdelmonem B, Abdelaal NM, Anwer EK, et al. Decoding the role of CYP450 enzymes in metabolism and disease: a comprehensive review. Biomedicines. 2024;12(7):1467. doi: 10.3390/biomedicines12071467 EDN: WDKOYN
  72. Barker KK, Whooley O, Madden EF, et al. The long tail of COVID and the tale of long COVID: diagnostic construction and the management of ignorance. Sociol Health Illn. 2024;46(S1):189–207. doi: 10.1111/1467-9566.13599 EDN: FSPYOM
  73. Virani SS, Newby LK, Arnold SV, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: a report of the American heart association / American College of Cardiology Joint Committee on clinical Practice guidelines. Circulation. 2023;148(9):e9–e119. doi: 10.1161/CIR.0000000000001168 EDN: UQJEFJ
  74. Samy W, Ellathy YA, Soliman RA, et al. Left ventricular assessment by 3D-echocardiography in post-COVID-19 syndrome. Egypt J Crit Care Med. 2025;12(4):4. doi: 10.1007/s44349-025-00015-3 EDN: RWHSRZ
  75. Seo JW, Kim SE, Kim Y, et al. Updated clinical practice guidelines for the diagnosis and management of long COVID. Infect Chemother. 2024;56(1):122–157. doi: 10.3947/ic.2024.0024 EDN: FMQMGV
  76. Puntmann VO, Martin S, Shchendrygina A, et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat Med. 2022;28(10):2117–2123. doi: 10.1038/s41591-022-02000-0 EDN: STJRKU
  77. Roca-Fernandez A, Wamil M, Telford A, et al. Cardiac abnormalities in long COVID 1-year post-SARS-CoV-2 infection. Open Heart. 2023;10(1):e002241. doi: 10.1136/openhrt-2022-002241 EDN: XHOQVE
  78. Choi YJ, Seo YuB, Seo JuW, et al. Effectiveness of antiviral therapy on long COVID: a systematic review and meta-analysis. J Clin Med. 2023;12(23):7375. doi: 10.3390/jcm12237375 EDN: FMBDNB
  79. Ceban F, Kulzhabayeva D, Rodrigues NB, et al. COVID-19 vaccination for the prevention and treatment of long COVID: a systematic review and meta-analysis. Brain Behav Immun. 2023;111:211–229. doi: 10.1016/j.bbi.2023.03.022 EDN: MGGGBY
  80. Watanabe A, Iwagami M, Yasuhara J, et al. Protective effect of COVID-19 vaccination against long COVID syndrome: a systematic review and meta-analysis. Vaccine. 2023;41(11):1783–1790. doi: 10.1016/j.vaccine.2023.02.008 EDN: XJQSPI
  81. Parodi JB, Indavere A, Bobadilla Jacob P, et al. Impact of COVID-19 vaccination in post-COVID cardiac complications. Vaccine. 2023;41(8):1524–1528. doi: 10.1016/j.vaccine.2023.01.052 EDN: QJLKTU
  82. Saha S, Sharma K. Modification of lifestyle to recover from post-COVID symptoms: a short review. J Lifestyle Med. 2022;12(3):113–118. doi: 10.15280/jlm.2022.12.3.113 EDN: NQNZKA
  83. Fung KW, Baye F, Baik SH, McDonald CJ. Nirmatrelvir and molnupiravir and post-COVID-19 condition in older patients. JAMA Intern Med. 2023;183(12):1404. doi: 10.1001/jamainternmed.2023.5099 EDN: VQCTCH
  84. Xie Y, Bowe B, Al-Aly Z. Molnupiravir and risk of hospital admission or death in adults with COVID-19: emulation of a randomized target trial using electronic health records. BMJ. 2023;380:e072705. doi: 10.1136/bmj-2022-072705
  85. Saffar H, Nabati M, Saffar N, Yazdani JA. Investigating the effects of remdesivir on corrected QT interval in patients with severe COVID-19 disease: a historical cohort study. BMC Cardiovasc Disord. 2024;24(1):700. doi: 10.1186/s12872-024-04380-2 EDN: TOOAOE
  86. Touafchia A, Bagheri H, Carrié D, et al. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect. 2021;27(5):791.e5–791.e8. doi: 10.1016/j.cmi.2021.02.013 EDN: YQOTNO
  87. Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med. 2022;386(15):1397–1408. doi: 10.1056/NEJMoa2118542 EDN: FCRDSN
  88. Xie Y, Choi T, Al-Aly Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern Med. 2023B;183(6):554–564. doi: 10.1001/jamainternmed.2023.0743 EDN: SMCHJV
  89. Meakleartmongkol T, Tangpanithandee S, Vanavivit N, et al. Potential drug-drug interactions of frequently prescribed medications in long COVID detected by two electronic databases. PLoS One. 2023;18(11):e0293866. doi: 10.1371/journal.pone.0293866 EDN: TRSLGZ
  90. Ganipisetti VM, Bollimunta P, Maringanti S. Paxlovid-induced symptomatic bradycardia and syncope. Cureus. 2023;15(1):e33831. doi: 10.7759/cureus.33831 EDN: YYWIPW
  91. Chen E, Xi L. Cardiovascular adverse effects of antiviral therapies for COVID-19: evidence and plausible mechanisms. Acta Pharmacol Sin. 2025;46(3):554–564. doi: 10.1038/s41401-024-01382-w EDN: MVKFYQ
  92. Wołowiec A, Wołowiec Ł, Grześk G, et al. The role of selected epigenetic pathways in cardiovascular diseases as a potential therapeutic target. Int J Mol Sci. 2023;24(18):13723. doi: 10.3390/ijms241813723 EDN: KMBQKX
  93. Yu Q, Zhao G, Liu J, et al. The role of histone deacetylases in cardiac energy metabolism in heart diseases. Metabolism. 2023;142:155532. doi: 10.1016/j.metabol.2023.155532 EDN: TPIUBW
  94. Hu SS. Disorders of cardiac rhythm in China. J Geriatr Cardiol. 2024;21(7):703–712. doi: 10.26599/1671-5411.2024.07.012 EDN: UTWRBN
  95. Sivasubramanian BP, Ravikumar DB, Vyas B, et al. Role of POCUS in the management of new-onset tachyarrhythmia in the setting of SARS-CoV-2: a case report. J Community Hosp Intern Med Perspect. 2023;13(6):50–53. doi: 10.55729/2000-9666.1261 EDN: EDNXVN
  96. Wiedmann F, Boondej E, Stanifer M, et al. SARS-CoV-2 ORF 3a-mediated currents are inhibited by antiarrhythmic drugs. Europace. 2024;26(10):euae252. doi: 10.1093/europace/euae252 EDN: MOOKER
  97. De Nigris A, Arenella M, Di Nardo G. The diagnostic and therapeutic challenge of atrial flutter in children: a case report. Ital J Pediatr. 2023;49:137. doi: 10.1186/s13052-023-01542-4 EDN: EESCRW
  98. Vattikonda K, Peterson CJ, Anyanwu B, et al. Therapeutic flecainide toxicity causing VT storm. JACC Case Rep. 2025;30(2):102797. doi: 10.1016/j.jaccas.2024.102797 EDN: YHNKLP
  99. Blasi F, Vicenzi M, De Ponti R. COVID-19 and cardiac arrhythmias: lesson learned and dilemmas. J Clin Med. 2024;13(23):7259. doi: 10.3390/jcm13237259 EDN: SFZNYM
  100. Johal A, Heaton J, Alshami A, et al. Trends in atrial fibrillation and ablation therapy during the coronavirus disease 2019 pandemic. J Innov Card Rhythm Manag. 2024;15(7):5955–5962. doi: 10.19102/icrm.2024.15074 EDN: JKPMZJ
  101. Maury P, Sanchis K, Djouadi K, et al. Catheter ablation of atrial arrhythmias in cardiac amyloidosis: impact on heart failure and mortality. PLoS One. 2024;19(4):e0301753. doi: 10.1371/journal.pone.0301753 EDN: GDVPPF
  102. Rajendra A, Osorio J, Diaz JC, et al. Performance of the REAL-AF same-day discharge protocol in patients undergoing catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2023;9(8 Pt 2):1515–1526. doi: 10.1016/j.jacep.2023.04.014 EDN: TTFVME
  103. Shanker AJ, Jones SO, Blankenship JC, et al. HRS/ACC scientific statement: guiding principles on same-day discharge for intracardiac catheter ablation procedures. Heart Rhythm. 2025;22(6):e1–e12. doi: 10.1016/j.hrthm.2025.02.029
  104. Ozemek C, Berry R, Bonikowske AR, et al. What has cardiac rehabilitation looked like in the COVID-19 pandemic: lessons learned for the future. Prog Cardiovasc Dis. 2023;6:20–24. doi: 10.1016/j.pcad.2023.01.001 EDN: BYGPLV
  105. Besnier F, Malo J, Mohammadi H, et al. Effects of cardiopulmonary rehabilitation on cardiorespiratory fitness and clinical symptom burden in long COVID: results from the covid-rehab randomized controlled trial. Am J Phys Med Rehabil. 2025;104(2):163–171. doi: 10.1097/PHM.0000000000002559 EDN: JIJPBW
  106. Gounaridi MI, Souvaliotis N, Vontetsianos A, et al. The impact of cardiopulmonary rehabilitation on ventriculoarterial coupling in post-coronavirus disease-2019 patients. J Cardiopulm Rehabil Prev. 2024;44(5):361–368. doi: 10.1097/HCR.0000000000000885 EDN: FOUZON
  107. Ghram A, Latiri I, Methnani J, et al. Effects of cardiorespiratory rehabilitation program on submaximal exercise in patients with long-COVID-19 conditions: a systematic review of randomized controlled trials and recommendations for future studies. Expert Rev Respir Med. 2023;17(12):1095–1124. doi: 10.1080/17476348.2023.2293226 EDN: KHUJLC
  108. Corrado J, Iftekhar N, Halpin S, et al. HEART rate variability biofeedback for long COVID dysautonomia (HEARTLOC): results of a feasibility study. Adv Rehabil Sci Pract. 2024;13:27536351241227261. doi: 10.1177/27536351241227261 EDN: UXWZUM

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».