Functional electrical stimulation method: recommended application parameters

Cover Page

Cite item

Full Text

Abstract

Functional electrical stimulation involves the use of electrical impulses to stimulate muscles during motor activity, particularly in patients with an acute cerebrovascular accident and are undergoing rehabilitation to regain their ability to walk.

This study aimed to examine the existing literature on the use of functional electrical stimulation, focusing on the application methods and stimulation parameters.

The authors analyzed the studies and determined scientifically validated parameters for stimulation and methods of applying functional electrical stimulation. This article provides a summary of key parameters such as frequency, waveform, amplitude, and duration of the electrical pulse and information on the placement of electrodes and synchronization of the pulses with movement, specifically with the gait cycle. Additionally, it covers aspects such as the timing of procedures and frequency and duration of treatment. The currently known aspects, advantages, and limitations of the method are discussed. Notably, several key parameters used in functional electrical stimulation have not been scientifically justified. The criteria for conducting functional electrical stimulation procedures and courses are unclear, and contraindications are reduced as the method evolves. Systems used for implementing functional electrical stimulation vary significantly in their capabilities for setting up work and synchronization with movement.

Considering the importance of rapidly restoring motor functions and the positive impact of functional electrical stimulation on physical and psychological health of neurological patients, further investigation is required to determine optimal parameters for functional electrical stimulation and its application methodology.

About the authors

Dmitry V. Skvortsov

Federal Center of Brain Research and Neurotechnologies; The Russian National Research Medical University named after N.I. Pirogov; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Email: dskvorts63@mail.ru
ORCID iD: 0000-0002-2794-4912
SPIN-code: 6274-4448

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 1/10 Ostrovityanova street, 117513 Moscow; 1 Ostrovityanova street, 117997 Moscow; 28, Orekhovy blvd, 115682 Moscow

Leonid V. Klimov

Federal Center of Brain Research and Neurotechnologies

Email: dr.klimov@mail.ru
ORCID iD: 0000-0003-1314-3388
SPIN-code: 5618-0734

MD, Cand. Sci. (Medicine)

Russian Federation, 1/10 Ostrovityanova street, 117513 Moscow

Natalya V. Grebenkina

The Russian National Research Medical University named after N.I. Pirogov

Author for correspondence.
Email: grebenkina_nv@rsmu.ru
ORCID iD: 0000-0002-8441-2285
SPIN-code: 6621-3836
Russian Federation, 1 Ostrovityanova street, 117997 Moscow

References

  1. Guryanova EA, Kovalchuk VV, Tikhoplav OA, Litvak FG. Functional electrical stimulation for restoration of gait and motor recovery after a stroke. review of scientific literature Physical Rehab Medicine Medical Rehab. 2020;2(3):244–262. EDN: DIKKPO doi: 10.36425/rehab34831
  2. Moe JH, Post HW. Functional electrical stimulation for ambulation in hemiplegia. J Lancet. 1962;82():285–288.
  3. Valenti F. L’elettrostimolazione neuromuscolare nella pratica clinica [neuromuscular electrostimulation in clinical practice. (In Italian)]. Acta Anaesthesiol. 1964;15():227–245.
  4. Deyo RA, Walsh NE, Martin DC, et al. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain. N Engl J Med. 1990;322(23):1627–1634. doi: 10.1056/NEJM199006073222303
  5. Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109–121. doi: 10.1054/jpai.2003.434
  6. Kesar TM, Perumal R, Jancosko A, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90(1):55–66. doi: 10.2522/ptj.20090140
  7. Wilder RP, Wind TC, Jones EV, et al. Functional electrical stimulation for a dropped foot. J Long Term Eff Med Implants. 2002;12(3):149–159.
  8. Li X, Li H, Liu Y, et al. The effect of electromyographic feedback functional electrical stimulation on the plantar pressure in stroke patients with foot drop. Front Neurosci. 2024;18:1377702. EDN: JQFODY doi: 10.3389/fnins.2024.1377702
  9. De Kroon JR, Ijzerman MJ, Chae J, et al. Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med. 2005;37(2):65–74. doi: 10.1080/16501970410024190
  10. Vitenzon AS, Petrushanskaya KA, Skvortsov DV. Manual on the application of the method of artificial correction of walking and rhythmic movements by means of programmed electrical stimulation of muscles. Moscow: T.M. Andreeva; 2004. 284 р. (In Russ).
  11. Vitenzon AS, Petrushanskaya KA. Physiological substantiation of the method of artificial correction of movements by means of programmed electrical stimulation of muscles during walking. Rossiiskii zhurnal biomekhaniki. 2010;14(2):7–27. (In Russ). EDN: MSOHVH
  12. Bhadra N, Peckham PH. Peripheral nerve stimulation for restoration of motor function. J Clin Neurophysiol. 1997;14(5): 378–393. doi: 10.1097/00004691-199709000-00004
  13. Kebaetse MB, Turner AE, Binder-Macleod SA. Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. J Appl Physiol (1985). 2002;92(1):109–116. doi: 10.1152/jappl.2002.92.1.109
  14. Bigland-Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: Electrical responses during human voluntary and stimulated contractions. Exp Neurol. 1979;64(2):414–427. doi: 10.1016/0014-4886(79)90280-2
  15. Fuglevand AJ, Keen DA. Re-evaluation of muscle wisdom in the human adductor pollicis using physiological rates of stimulation. J Physiol. 2003;549(Pt. 3):865–875. doi: 10.1113/jphysiol.2003.038836
  16. Mang CS, Lagerquist O, Collins DF. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp Brain Res. 2010;203(1):11–20. EDN: WESJMZ doi: 10.1007/s00221-010-2202-x
  17. Hoffman LR, Field-Fote EC. Cortical reorganization following bimanual training and somatosensory stimulation in cervical spinal cord injury: A case report. Phys Ther. 2007;87(2):208–223. doi: 10.2522/ptj.20050365
  18. Kandel E, Schwartz J, Jessell T, et al. Principles of neural science. New York: McGraw Hill Professional; 2000.
  19. Popovic MR, Keller T, Pappas IP, et al. Surface-stimulation technology for grasping and walking neuroprosthesis. IEEE Eng Med Biol Mag. 2001;20(1):82–93. doi: 10.1109/51.897831
  20. Baker LL. Neuromuscular electrical stimulation: A practical guide. 4th ed. Downey, Calif.: Los Amigos Research & Education Institute, Rancho Los Amigos National Rehabilitation Center; 2000. 252 р.
  21. Janssen TW, Bakker M, Wyngaert A, et al. Effects of stimulation pattern on electrical stimulation-induced leg cycling performance. J Rehabil Res Dev. 2004;41(6A):787–796. EDN: XRFRCN doi: 10.1682/jrrd.2004.03.0030
  22. Kebaetse MB, Binder-Macleod SA. Strategies that improve human skeletal muscle performance during repetitive, non-isometric contractions. Pflugers Arch. 2004;448(5):525–532. doi: 10.1007/s00424-004-1279-0
  23. Bigland-Ritchie B, Zijdewind I, Thomas CK. Muscle fatigue induced by stimulation with and without doublets. Muscle Nerve. 2000;23(9):1348–1355. doi: 10.1002/1097-4598(200009)23:9<1348::aid-mus5>3.0.co;2-0
  24. Doucet BM, Griffin L. Maximal versus submaximal intensity stimulation with variable patterns. Muscle Nerve. 2008;37(6):770–777. doi: 10.1002/mus.20992
  25. Van Lunteren E, Moyer M. Combination of variable frequency train stimulation and K+ channel blockade to augment skeletal muscle force. IEEE Trans Neural Syst Rehabil Eng. 2004;12(2): 288–294. doi: 10.1109/TNSRE.2004.828426
  26. Burke RE, Rudomin P, Zajac FE. The effect of activation history on tension production by individual muscle units. Brain Res. 1976;109(3):515–529. EDN: XRDLNB doi: 10.1016/0006-8993(76)90031-7
  27. Binder-Macleod SA, Lee SC, Russ DW, Kucharski LJ. Effects of activation pattern on human skeletal muscle fatigue. Muscle Nerve. 1998;21(9):1145–1152. doi: 10.1002/(sici)1097-4598(199809)21:9<1145::aid-mus5>3.0.co;2-7
  28. Baker C, Kebaetse MB, Lee SC, Binder-Macleod SA. A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve. 2001;24(6):744–752. EDN: XQPMWN doi: 10.1002/mus.1065
  29. Scott WB, Binder-Macleod SA. Changing stimulation patterns improves performance during electrically elicited contractions. Muscle Nerve. 2003;28(2):174–180. doi: 10.1002/mus.10412
  30. Winter DA, Scott SH. Technique for Interpretation of electromyography for concentric and eccentric contraction in gait. J Electromyograp Kinesiol. 1991;1(4):263–269.
  31. Gracanin F, Trnkoczy A. Optimal stimulus parameters for minimum pain in the chronic stimulation of innervated muscle. Arch Phys Med Rehabil. 1975;56(6):243–249.
  32. McLoda TA, Carmack JA. Optimal burst duration during a facilitated quadriceps femoris contraction. J Athl Train. 2000;35(2):145–150.
  33. Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020;19(1):34. EDN: YVDPJF doi: 10.1186/s12938-020-00773-4
  34. Collins DF. Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exercise Sport Sci Rev. 2007;35(3):102–109. doi: 10.1097/jes.0b013e3180a0321b
  35. Eser PC, Donaldson Nde N, Knecht H, Stüssi E. Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people. IEEE Trans Neural Syst Rehabil Eng. 2003;11(3):236–240. doi: 10.1109/TNSRE.2003.817677
  36. Kristensen MG, Busk H, Wienecke T. Neuromuscular electrical stimulation improves activities of daily living post stroke: A systematic review and meta-analysis. Arch Rehab Res Clin Transl. 2021;4(1):100167. EDN: ZTLZYQ doi: 10.1016/j.arrct.2021.100167
  37. Chipchase L, Schabrun S, Hodges P. Peripheral electrical stimulation to induce cortical plasticity: A systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456–463. doi: 10.1016/j.clinph.2010.07.025
  38. Lagerquist O, Collins DF. Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve. 2010;42(6):886–893. doi: 10.1002/mus.21762
  39. Livshitz LM, Mizrahi J, Einziger PD. Interaction of array of finite electrodes with layered biological tissue: Effect of electrode size and configuration. IEEE Trans Neural Syst Rehabil Eng. 2001;9(4): 355–361. doi: 10.1109/7333.1000115
  40. Sha N, Kenney LP, Heller BW, et al. A finite element model to identify electrode influence on current distribution in the skin. Artif Organs. 2008;32(8):639–643. doi: 10.1111/j.1525-1594.2008.00615.x
  41. Mangold S, Keller T, Curt A, Dietz V. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord. 2005;43(1):1–13. doi: 10.1038/sj.sc.3101644
  42. Thrasher TA, Flett HM, Popovic MR. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord. 2006;44(6):357–361. doi: 10.1038/sj.sc.3101864
  43. Perry J, Burnfield JM. Gait analysis: Normal and pathological function. 2nd ed. New Jersey: Slack Incorporated; 2010. 570 р. doi: 10.1201/9781003525592
  44. Kirtley C. Clinical gait analysis: Theory and practice. Elsevier Health Sciences; 2006. 316 p.
  45. Fang Y, Li J, Liu S, et al. Optimization of electrical stimulation for the treatment of lower limb dysfunction after stroke: A systematic review and Bayesian network meta-analysis of randomized controlled trials. PLoS One. 2023;18(5):e0285523. EDN: MCMEUB doi: 10.1371/journal.pone.0285523
  46. Vromans M, Faghri PD. Functional electrical stimulation-induced muscular fatigue: Effect of fiber composition and stimulation frequency on rate of fatigue development. J Electromyogr Kinesiol. 2018;38:67–72. doi: 10.1016/j.jelekin.2017.11.006
  47. Casabona A, Valle MS, Dominante C, et al. Effects of functional electrical stimulation cycling of different duration on viscoelastic and electromyographic properties of the knee in patients with spinal cord injury. Brain Sci. 2021;11(1):7. EDN: KVEKXD doi: 10.3390/brainsci11010007
  48. Rushton DN. Functional electrical stimulation. Physiological Measurement. 1997;18(4):241–275. doi: 10.1088/0967-3334/18/4/001
  49. Thrasher TA, Popovic MR. Functional electrical stimulation of walking: Function, exercise and rehabilitation. (In English, French). Ann Readapt Med Phys. 2008;51(6):452–460. doi: 10.1016/j.annrmp.2008.05.006
  50. Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil. 2001;7(4):1–18. doi: 10.1310/JB16-V04F-JAL5-H1UV
  51. Matsumoto S, Shimodozono M, Noma T, et al. Effect of functional electrical stimulation in convalescent stroke patients: A multicenter, randomized controlled trial. The rally trial investigators. J Clin Med. 2023;12(7):2638. EDN: ZJUOMI doi: 10.3390/jcm12072638
  52. Springer S, Vatine JJ, Wolf A, Laufer Y. The effects of dual-channel functional electrical stimulation on stance phase sagittal kinematics in patients with hemiparesis. J Electromyogr Kinesiol. 2013;23(2):476–482. doi: 10.1016/j.jelekin.2012.10.017
  53. Kesar TM, Perumal R, Reisman DS, et al. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: Effects on poststroke gait. Stroke. 2009;40(12):3821–3827. doi: 10.1161/STROKEAHA.109.560375
  54. Kim JH, Chung Y, Kim Y, Hwang S. Functional electrical stimulation applied to gluteus medius and tibialis anterior corresponding gait cycle for stroke. Gait Posture. 2012;36(1):65–67. doi: 10.1016/j.gaitpost.2012.01.006
  55. Bao X, Luo JN, Shao YC, et al. Effect of functional electrical stimulation plus body weight-supported treadmill training for gait rehabilitation in patients with poststroke: A retrospective case-matched study. Eur J Phys Rehabil Med. 2020;56(1):34–40. doi: 10.23736/S1973-9087.19.05879-9
  56. Dong Y, Wang K, He R, et al. Hybrid and adaptive control of functional electrical stimulation to correct hemiplegic gait for patients after stroke. Front Bioeng Biotechnol. 2023;11:1246014. EDN: XESGZL doi: 10.3389/fbioe.2023.1246014
  57. Sijobert B, Azevedo C, Pontier J, et al. A sensor-based multichannel FES system to control knee joint and reduce stance phase asymmetry in post-stroke gait. Sensors (Basel). 2021;21(6):2134. doi: 10.3390/s21062134
  58. Araki S, Kawada M, Miyazaki T, et al. Effect of functional electrical stimulation of the gluteus medius during gait in patients following a stroke. Biomed Res Int. 2020;2020:8659845. doi: 10.1155/2020/8659845
  59. Nagai MK, Marquez-Chin C, Popovic MR. Why is functional electrical stimulation therapy capable of restoring motor function following severe injury to the central nervous system? In: Tuszynski MH. Translational neuroscience: Fundamental approaches for neurological disorders. Springer; 2016. P. 479–498.
  60. Vanderthommen M, Duchateau J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev. 2007;35(4):180–185. doi: 10.1097/jes.0b013e318156e785
  61. Gregory CM, Bickel CS. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther. 2005;85(4):358–364.
  62. Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126(3287):1345–1347. EDN: ICSTQL doi: 10.1126/science.126.3287
  63. Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: A critical appraisal. Eur J Appl Physiol. 2011;111(10):2399–2407. EDN: VVPQKC doi: 10.1007/s00421-011-2128-4
  64. Carpentier A, Duchateau J, Hainaut K. Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus. J Physiol. 2001;534(Pt. 3):903–912. EDN: YJEPTW doi: 10.1111/j.1469-7793.2001.00903.x
  65. Fuglevand AJ, Winter DA, Patla AE, Stashuk D. Detection of motor unit action potentials with surface electrodes: Influence of electrode size and spacing. Biol Cybern. 1992;67(2):143–153. doi: 10.1007/BF00201021
  66. Denegar C, Saliba E, Saliba S, et al. Therapeutic modalities for musculoskeletal injuries. Champaign, IL: Human Kinetics; 2009. 294 р.
  67. Ozer K, Chesher SP, Scheker LR. Neuromuscular electrical stimulation and dynamic bracing for the management of upper-extremity spasticity in children with cerebral palsy. Dev Med Child Neurol. 2006;48(7):559–563. EDN: HWBMTD doi: 10.1017/S0012162206001186
  68. Shields RK, Dudley-Javoroski S. Musculoskeletal plasticity after acute spinal cord injury: Effects of long-term neuromuscular electrical stimulation training. J Neurophysiol. 2006;95(4):2380–2390. doi: 10.1152/jn.01181.2005
  69. Van Duijnhoven NT, Janssen TW, Green DJ, et al. Effect of functional electrostimulation on impaired skin vasodilator responses to local heating in spinal cord injury. J Appl Physiol (1985). 2009;106(4):1065–1071. doi: 10.1152/japplphysiol.91611.2008
  70. Koyuncu E, Nakipoğlu-Yüzer GF, Doğan A, Ozgirgin N. The effectiveness of functional electrical stimulation for the treatment of shoulder subluxation and shoulder pain in hemiplegic patients: A randomized controlled trial. Disabil Rehabil. 2010;32(7):560–566. doi: 10.3109/09638280903183811
  71. Gargiulo P, Reynisson PJ, Helgason B, et al. Muscle, tendons, and bone: Structural changes during denervation and FES treatment. Neurol Res. 2011;33(7):750–758. doi: 10.1179/1743132811Y.0000000007
  72. Sahin N, Ugurlu H, Albayrak I. The efficacy of electrical stimulation in reducing the post-stroke spasticity: A randomized controlled study. Disabil Rehabil. 2012;34(2):151–156. doi: 10.3109/09638288.2011.593679
  73. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10.1016/S1474-4422(09)70150-4
  74. Santos M, Zahner LH, McKiernan BJ, et al. Neuromuscular electrical stimulation improves severe hand dysfunction for individuals with chronic stroke: A pilot study. J Neurol Phys Ther. 2006;30(4):175–183. doi: 10.1097/01.npt.0000281254.33045.e4
  75. Dolbow DR, Gorgey AS, Cifu DX, et al. Feasibility of home-based functional electrical stimulation cycling: Case report. Spinal Cord. 2012;50(2):170–171. doi: 10.1038/sc.2011.115
  76. Popovic MR, Keller T, Pappas IP, et al. Surface-stimulation technology for grasping and walking neuroprosthesis. IEEE Eng Med Biol Mag. 2001;20(1):82–93. doi: 10.1109/51.897831
  77. Skvortsov DV, Kaurkin SN, Ivanova GE. A study of biofeedback gait training in cerebral stroke patients in the early recovery phase with stance phase as target parameter. Sensors. 2021;21(21):7217. EDN: MKCCUM doi: 10.3390/s21217217

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The unipolar meander. At the top is a sequence of pulses at a frequency of 7 Hz, at the bottom ― 2.3 Hz. Д, pulse duration, И, interval.

Download (431KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».