Possibilities of using protein electrophoresis to assess metabolism in horses (literature review)

Capa

Citar

Texto integral

Resumo

Background. Electrophoresis is a common and effective method for assessing the protein profile of humans and animals. The method of protein separation by electrophoresis has been well established since its discovery and has been developed and improved over several decades. At the present stage this procedure does not lose its relevance and finds new areas of application.

Purpose. To study and analyze the accumulated experience in the application of protein detection methods by electrophoresis, in particular for the assessment of equine metabolism.

Materials and methods. Literature search was performed by keywords using open databases: PubMed, eLibrary, Scopus, and Google Academic search engine. The most significant works on the topic of the review were selected and analyzed.

Results. The molecular weight, size and shape of the molecule as well as its total charge are the main factors that make it possible to separate complex mixtures into separate fractions due to differences in their velocity. Successful separation of protein mixtures is influenced not only by the nature of the proteins, but also by the supporting medium, which must fulfill important characteristics: maintain optimal pH and allow molecules to pass through at a certain speed. Protein detection methods are as varied as the separation methods: non-selective staining with Coomassie brilliant blue, amido black 10B, silver, fluorescent dyes, and selective by immunoprecipitation or enzyme electrophoresis.

The evaluation of equine metabolism by electrophoresis extends to virtually all areas of study: establishing seasonal and age-related changes; analyzing breed, subpopulation and hybrid traits; evaluating markers of inflammation, certain pathologies such as ulceration, uveitis, parasitic and viral infections, myopathies, and markers of animal fitness. In animal reproduction, electrophoresis can be used to assess the quality of ejaculate, to determine the ability of semen to freeze, to detect the viability of spermatozoa, including after cryopreservation, and to detect changes during mare foaling.

Conclusion. The electrophoresis method is widely used in the assessment of human and animal metabolism, including horses. It has a high degree of significance for the analysis of population, age-sex and seasonal differences in horses, and also finds its application in the assessment of animal performance and reproductive technologies.

Sobre autores

Mikhail Atroshchenko

All-Russian Research Institute for Horse Breeding

Autor responsável pela correspondência
Email: atromiks-77@mail.ru
ORCID ID: 0000-0001-6023-0332
Código SPIN: 4509-6874
Scopus Author ID: 36781771200
Researcher ID: R-6360-2016

Ph.D. Biol. Sc., Head of the Laboratory of Cryobiology

 

Rússia, Divovo, Rybnovskii district, Ryazan region, 391105, Russian Federation

Yuliya Marsyanova

All-Russian Research Institute for Horse Breeding; Ryazan State Medical University

Email: yuliyamarsyanova@yahoo.com
ORCID ID: 0000-0003-4948-4504
Código SPIN: 4075-3169
Scopus Author ID: 58037038700
Researcher ID: GLN-5372-2022

Researcher at the Laboratory of Cryobiology; Assistant at the Department of Biological Chemistry

 

Rússia, Divovo, Rybnovskii district, Ryazan region, 391105, Russian Federation; 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

Bibliografia

  1. Grigorieva, N. N., & Grigoriev, S. N. (2022). Indicators of amino acid composition of blood in Yakut breed horses. In Strategy and prospects of development of agricultural technologies and forestry in Yakutia until 2050: Collection of scientific articles based on materials of the All-Russian scientific-practical conference with international participation dedicated to the 100th anniversary of the formation of the Yakut ASSR and the 85th anniversary of the First President of the RS(Y) M. E. Nikolaev (Nikolaev Readings) (pp. 412-418). Yakutsk: Publishing House «Znanie-M». EDN: https://elibrary.ru/lnacaq
  2. Grigorieva, N. N., & Pavlova, A. I. (2008). Some hematological indicators of horses of Yakut breed by ecotypes. Agrarian Bulletin of the Urals, 1(43), 50-52. EDN: https://elibrary.ru/iyqavz
  3. Dodokhov, V. V., & Filippova, N. P. (2015). Polymorphism of blood serum proteins in horses of Yakut breed. Potential of Modern Science, 4(12), 70-75. EDN: https://elibrary.ru/txnuwr
  4. Zavyalova, O. A., Marsyanova, Yu. A., Ishtulin, A. F., et al. (2021). Effect of variable valence metals on oxidative modification of albumin amino acid residues. Science of the Young (Eruditio Juvenium), 9(3), 369-376. https://doi.org/10.23888/HMJ202193369-376. EDN: https://elibrary.ru/dltlym
  5. Mardanly, S. G., Avdonina, A. S., & Zatevalov, A. M. (2021). Immune blotting for detection of specific immunoglobulins class «M» to SARS-CoV-2 coronavirus. Izvestiya GSTU. Medicine, Pharmacy, 3, 45-53. EDN: https://elibrary.ru/rrmjll
  6. Marsyanova, Yu. A., Zvyagina, V. I., Belskikh, E. S., et al. (2024). Arginine and succinate as factors supporting mitochondrial oxidative phosphorylation under hypoxia. Izvestiya GSTU. Medicine, Pharmacy, 2, 10-18. https://doi.org/10.51620/2687-1521-2024-2-18-10-18. EDN: https://elibrary.ru/qhlioe
  7. Marsyanova, Yu. A., Zvyagina, V. I., & Solovykh, D. A. (2023). Effect of modulation of nitric oxide (II) synthesis under chronic normobaric hypoxia on lactate dehydrogenase isoenzyme spectrum of rat epididymis. Problems of Biological, Medical and Pharmaceutical Chemistry, 26(1), 49-54. https://doi.org/10.29296/25877313-2023-01-09. EDN: https://elibrary.ru/ibjovn
  8. Nazarenko, R. V., & Zdanovsky, V. M. (2019). Methods of sperm selection for intracytoplasmic sperm injection procedure in in vitro fertilization programs (literature review). Reproduction Issues, 25(2), 83-89. https://doi.org/10.17116/repro20192502183. EDN: https://elibrary.ru/rvnrsh
  9. Niyatshin, F. I., Dolmatova, I. Yu., & Ganieva, I. N. (2015). Analysis of genetic structure of Bashkir breed horses by polymorphic proteins and blood enzymes. In Agricultural science in innovative development of agro-industrial complex: Materials of the international scientific-practical conference dedicated to the 85th anniversary of Bashkir State Agrarian University within the framework of the XXV International specialized exhibition «Agrocomplex-2015» (Part II, pp. 139-143). Ufa: Bashkir State Agrarian University. EDN: https://elibrary.ru/ubayil
  10. Parakhin, A. S., Gabrielyan, A. V., Demenin, V. Yu., et al. (2020). Application of combination of protein fraction purification and analysis methods using the example of electrophoretic analysis of amylolytic enzymes. In Fundamental and applied research in natural sciences and technical sciences: hypotheses, ideas, results: Collection of scientific papers based on materials of the International scientific-practical conference (pp. 24-28). Belgorod: LLC «Agency for Advanced Scientific Research». EDN: https://elibrary.ru/jcplnk
  11. Tarasenko, S. V., Natal’skiy, A. A., Peskov, O. D., Bogomolov, A. Yu., Nikiforov, A. A., Avilushkina, E. O., & Tarakanov, P. V. (2021). Possibilities of early diagnosis and prediction of complicated clinical forms of chronic pancreatitis. I. P. Pavlov Russian Medical and Biological Herald, 29(2), 267-275. https://doi.org/10.17816/PAVLOVJ34887. EDN: https://elibrary.ru/rrlcpk
  12. Tseloval’nikova, M. I. (2010). Possibility of using polymorphic proteins and serum enzymes in origin control of Karachay breed horses. Agricultural Journal, 3(1), 96-97. EDN: https://elibrary.ru/nwawwb
  13. Yurov, G. K., Alekseenkova, S. V., Diaz Jimenez, K. A., et al. (2013). Immunological methods for diagnosis of equine infectious anemia. Russian Veterinary Journal, 1, 28-30. EDN: https://elibrary.ru/pyedot
  14. Adams, L. D., & Gallagher, S. R. (2005). Two-dimensional gel electrophoresis. Curr Protoc Immunol, chapter 8:8.5.1-8.5.24. https://doi.org/10.1002/0471142735.im0805s68
  15. Agarwal, A., Barbăroșie, C., Ambar, R., et al. (2020). The Impact of Single- and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction. Int J Mol Sci, 21(11), 3882. https://doi.org/10.3390/ijms21113882. EDN: https://elibrary.ru/phkedt
  16. Agrícola, R., Carvalho, H., Barbosa, M., et al. (2008). Blood lymphocyte subpopulations, neutrophil phagocytosis and proteinogram during late pregnancy and postpartum in mares. Reprod Domest Anim, 43(2), 212-217. https://doi.org/10.1111/j.1439-0531.2007.00879.x
  17. Arakawa, T., Nakagawa, M., Sakuma, C., et al. (2024). Electrophoresis, a transport technology that transitioned from moving boundary method to zone method. Eur Biophys J, 53(1-2), 1-13. https://doi.org/10.1007/s00249-023-01694-5. EDN: https://elibrary.ru/uaebpw
  18. Belgrave, R. L., Dickey, M. M., Arheart, K. L., et al. (2013). Assessment of serum amyloid A testing of horses and its clinical application in a specialized equine practice. J Am Vet Med Assoc, 243(1), 113-119. https://doi.org/10.2460/javma.243.1.113
  19. Bergström, K., Aspan, A., Landén, A., et al. (2012). The first nosocomial outbreak of methicillin-resistant Staphylococcus aureus in horses in Sweden. Acta Vet Scand, 54(1), 11. https://doi.org/10.1186/1751-0147-54-11. EDN: https://elibrary.ru/ghtefo
  20. Bouwman, F. G., van Ginneken, M. M., Noben, J. P., et al. (2010). Differential expression of equine muscle biopsy proteins during normal training and intensified training in young standardbred horses using proteomics technology. Comp Biochem Physiol Part D Genomics Proteomics, 5(1), 55-64. https://doi.org/10.1016/j.cbd.2009.11.001
  21. Bouwman, F. G., van Ginneken, M. M., van der Kolk, J. H., et al. (2010). Novel markers for tying-up in horses by proteomics analysis of equine muscle biopsies. Comp Biochem Physiol Part D Genomics Proteomics, 5(2), 178-183. https://doi.org/10.1016/j.cbd.2010.03.009
  22. Brandon, C. I., Heusner, G. L., Caudle, A. B., et al. (1999). Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology, 52(5), 863-873. https://doi.org/10.1016/S0093-691X(99)00178-8
  23. Burnette, W. N. (1981). “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem, 112(2), 195-203. https://doi.org/10.1016/0003-2697(81)90281-5
  24. Byard, J., Marshall, D. E., Houghton, E., et al. (1996). Novel approaches to the purification and identification of cytochrome P450 enzymes in the equine. Biochem Soc Trans, 24(2), 208S. https://doi.org/10.1042/bst024208s
  25. Cannon-Carlson, S., & Tang, J. (1997). Modification of the Laemmli sodium dodecyl sulfate-polyacrylamide gel electrophoresis procedure to eliminate artifacts on reducing and nonreducing gels. Anal Biochem, 246(1), 146-148. https://doi.org/10.1006/abio.1997.2002
  26. Choudhary, S., Kumaresan, A., Kumar, M., et al. (2017). Effect of recombinant and native buffalo OVGP1 on sperm functions and in vitro embryo development: a comparative study. J Anim Sci Biotechnol, 8, 69. https://doi.org/10.1186/s40104-017-0201-5. EDN: https://elibrary.ru/irphkt
  27. Chubatsu, L. S., Gerhardt, E. C. M., & Souza, E. M. (2023). A simple preparation of prestained molecular markers for electrophoresis using inexpensive and readily available proteins. Anal Biochem, 1(676), 115231. https://doi.org/10.1016/j.ab.2023.115231. EDN: https://elibrary.ru/glbtcp
  28. Collinder, E., Berge, G. N., Grønvold, B., et al. (2000). Influence of bacitracin on microbial functions in the gastrointestinal tract of horses. Equine Vet J, 32(4), 345-350. https://doi.org/10.2746/042516400777032165
  29. Csako, G. (2019). Immunoelectrophoresis: A Method with Many Faces. Methods Mol Biol, 1855, 249-268. https://doi.org/10.1007/978-1-4939-8793-1_21
  30. de Menezes, V. T., Queiroz, A. O., Gomes, M. A., et al. (2004). Trypanosoma evansi in inbred and Swiss-Webster mice: distinct aspects of pathogenesis. Parasitol Res, 94(3), 193-200. https://doi.org/10.1007/s00436-004-1207-4. EDN: https://elibrary.ru/qxpima
  31. Dedet, J. P. (2000). Les leishmanioses: actualités [Leishmaniasis: update]. Presse Med, 29(18), 1019-1026.
  32. Dezhabad, A., Dalimi, A., Hoghooghi Rad, N., et al. (2023). Secretory Excretory and Somatic Immunogenic Antigens Profiles of Adult Fasciola spp. Arch Razi Inst, 78(1), 435-443. https://doi.org/10.22092/ARI.2022.359262.2393
  33. Dias, G. M., López, M. L., Ferreira, A. T., et al. (2014). Thiol-disulfide proteins of stallion epididymal spermatozoa. Anim Reprod Sci, 145(1-2), 29-39. https://doi.org/10.1016/j.anireprosci.2013.12.007
  34. Ellenberger, C., Wilsher, S., Allen, W. R., et al. (2008). Immunolocalisation of the uterine secretory proteins uterocalin, uteroferrin and uteroglobin in the mare’s uterus and placenta throughout pregnancy. Theriogenology, 70(5), 746-757. https://doi.org/10.1016/j.theriogenology.2008.04.050
  35. Ellison, R. S., & Jacobs, R. M. (1990). An attempt to determine the tissue origin of equine serum alkaline phosphatase by isoelectric focusing. Can J Vet Res, 54(1), 119-125.
  36. Franco, M. M., Santos, J. B., Mendonça, A. S., et al. (2016). Quick method for identifying horse (Equus caballus) and donkey (Equus asinus) hybrids. Genet Mol Res, 15(3), gmr.15038895. https://doi.org/10.4238/gmr.15038895
  37. González, P. M., & Puntarulo, S. (2011). Iron and nitrosative metabolism in the Antarctic mollusc Laternula elliptica. Comp Biochem Physiol C Toxicol Pharmacol, 153(2), 243-250. https://doi.org/10.1016/j.cbpc.2010.11.003
  38. Granstrom, D. E. (1995). Recent advances in the laboratory diagnosis of equine parasitic diseases. Vet Clin North Am Equine Pract, 11(3), 437-442. https://doi.org/10.1016/s0749-0739(17)30309-7
  39. Grignard, E., Morin, J., Vernet, P., et al. (2005). GPX5 orthologs of the mouse epididymis-restricted and sperm-bound selenium-independent glutathione peroxidase are not expressed with the same quantitative and spatial characteristics in large domestic animals. Theriogenology, 64(4), 1016-1033. https://doi.org/10.1016/j.theriogenology.2005.01.008
  40. Groschup, M., Müller, H. P., Weiss, R., et al. (1990). Studies of antigenic components in acid extracts of group C streptococci with special reference to Streptococcus equi. Zentralbl Bakteriol, 273(4), 459-470. https://doi.org/10.1016/s0934-8840(11)80453-6
  41. He, H., Wang, L., Wang, X., & Zhang, M. (2024). Artificial intelligence in serum protein electrophoresis: history, state of the art, and perspective. Crit Rev Clin Lab Sci, 61(3), 226-240. https://doi.org/10.1080/10408363.2023.2274325
  42. Jiménez-Trejo, F., Coronado-Mares, I., Boeta, M., et al. (2018). Identification of serotoninergic system components in stallion sperm. Histol Histopathol, 33(9), 951-958. https://doi.org/10.14670/HH-11-989
  43. Jobim, M. I., Trein, C., Zirkler, H., et al. (2011). Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their relation with semen freezability. Theriogenology, 76(4), 765-771. https://doi.org/10.1016/j.theriogenology.2011.04.010
  44. Jung, H., Song, H., & Yoon, M. (2015). The KIT is a putative marker for differentiating spermatogonia in stallions. Anim Reprod Sci, 152, 39-46. https://doi.org/10.1016/j.anireprosci.2014.11.004
  45. Kankavi, O., Ata, A., & Akif Ciftcioglu, M. (2006). Surfactant protein A and D in the reproductive tract of stallion. Theriogenology, 66(5), 1057-1064. https://doi.org/10.1016/j.theriogenology.2006.02.047
  46. Kankavi, O., Ata, A., & Gungor, O. (2007). Surfactant proteins A and D in the genital tract of mares. Anim Reprod Sci, 98(3-4), 259-270. https://doi.org/10.1016/j.anireprosci.2006.03.009
  47. Kankavi, O., & Roberts, M. S. (2004). Detection of surfactant protein A (SP-A) and surfactant protein D (SP-D) in equine synovial fluid with immunoblotting. Can J Vet Res, 68(2), 146-149
  48. Kitaoka, Y., Hoshino, D., Mukai, K., et al. (2011). Effect of growth on monocarboxylate transporters and indicators of energy metabolism in the gluteus medius muscle of Thoroughbreds. Am J Vet Res, 72(8), 1107-1111. https://doi.org/10.2460/ajvr.72.8.1107
  49. Kurien, B. T., & Scofield, R. H. (2006). Western blotting. Methods, 38(4), 283-293. https://doi.org/10.1016/j.ymeth.2005.11.007
  50. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0
  51. Landsberger, M., & Brinkmeier, H. (2023). Immunoblot Analysis of DIGE-Based Proteomics. Methods Mol Biol, 2596, 429-443. https://doi.org/10.1007/978-1-0716-2831-7_29
  52. Lee, C. H. (2017). A Simple Outline of Methods for Protein Isolation and Purification. Endocrinol Metab (Seoul), 32(1), 18-22. https://doi.org/10.3803/EnM.2017.32.1.18
  53. López-Martínez, M. J., Lamy, E., Cerón, J. J., et al. (2024). Changes in the saliva proteome analysed by gel-proteomics in horses diagnosed with equine gastric ulcer syndrome (EGUS) at diagnosis and after successful treatment. Res Vet Sci, 167, 105112. https://doi.org/10.1016/j.rvsc.2023.105112. EDN: https://elibrary.ru/noxsyi
  54. Machado, T. S., Correia da Silva, L. C., Baccarin, R. Y., et al. (2012). Synovial fluid chondroitin sulphate indicates abnormal joint metabolism in asymptomatic osteochondritic horses. Equine Vet J, 44(4), 404-411. https://doi.org/10.1111/j.2042-3306.2011.00539.x
  55. Maher, A., Toaleb, N. I., & Shaapan, R. M. (2024). Human and camel cystic echinococcosis - a polyclonal antibody-based sandwich ELISA for its serodiagnosis with molecular identification. Vet Res Commun, 26. https://doi.org/10.1007/s11259-024-10375-3. EDN: https://elibrary.ru/almtgz
  56. Martin, G. B., Mansion, F., Servais, A. C., et al. (2009). CE-MS method development for peptides analysis, especially hepcidin, an iron metabolism marker. Electrophoresis, 30(15), 2624-2631. https://doi.org/10.1002/elps.200800794
  57. Martínez-Torrecuadrada, J. L., Díaz-Laviada, M., Roy, P., et al. (1997). Serologic markers in early stages of African horse sickness virus infection. J Clin Microbiol, 35(2), 531-535. https://doi.org/10.1128/jcm.35.2.531-535.1997
  58. McDonagh, B. (2012). Diagonal electrophoresis for the detection of protein disulfides. Methods Mol Biol, 869, 309-315. https://doi.org/10.1007/978-1-61779-821-4_26
  59. McGuire, T. R., & Weitkamp, L. R. (1980). Equine marker genes. Polymorphism for transferrin alleles, TfF1 and TfF2, in Thoroughbreds. Anim Blood Groups Biochem Genet, 11(2), 113-117. https://doi.org/10.1111/j.1365-2052.1980.tb01501.x
  60. Mendoza, L., Gunawardhana, T., Batchelor, W., et al. (2019). Nanocellulose for gel electrophoresis. J Colloid Interface Sci, 540, 148-154. https://doi.org/10.1016/j.jcis.2019.01.017
  61. Minden, J. (2007). Comparative proteomics and difference gel electrophoresis. Biotechniques, 43(6), 739-745. https://doi.org/10.2144/000112653
  62. Miyata, H., Sugiura, T., Kai, M., et al. (1999). Muscle adaptation of Thoroughbred racehorses trained on a flat or sloped track. Am J Vet Res, 60(12), 1536-1539
  63. Mizuno, Y., Ohba, Y., Fujita, H., et al. (1989). Activity staining of acylphosphatase after gel electrophoresis. Anal Biochem, 183(1), 46-49. https://doi.org/10.1016/0003-2697(89)90169-3
  64. Naumenkova, V. A., Khrabrova, L. A., & Atroshchenko, M. M. (2023). Analysis of the interconnection of stallion semen indicators with genetic markers of proteins. Siberian Journal of Life Sciences and Agriculture, 15(4), 197-209. https://doi.org/10.12731/2658-6649-2023-15-4-197-209. EDN: https://elibrary.ru/hurkbr
  65. Paltrinieri, S., Giordano, A., Villani, M., et al. (2008). Influence of age and foaling on plasma protein electrophoresis and serum amyloid A and their possible role as markers of equine neonatal septicaemia. Vet J, 176(3), 393-396. https://doi.org/10.1016/j.tvjl.2007.05.018
  66. Poltep, K., Tesena, P., Yingchutrakul, Y., et al. (2018). Optimisation of a serum albumin removal protocol for use in a proteomic study to identify the protein biomarkers for silent gastric ulceration in horses. J Equine Sci, 29(3), 53-60. https://doi.org/10.1294/jes.29.53
  67. Qiu, Y., Yang, H., Li, C., et al. (2020). Progress in Research on Sperm DNA Fragmentation. Med Sci Monit, 26, e918746. https://doi.org/10.12659/MSM.918746. EDN: https://elibrary.ru/uducde
  68. Rappa, K. L., Rodriguez, H. F., Hakkarainen, G. C., et al. (2016). Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol Adv, 34(5), 578-587. https://doi.org/10.1016/j.biotechadv.2016.01.007
  69. Ren, G., Okerberg, C. K., & Mathews, S. T. (2012). Ultrasensitive protein detection and imaging: comparison of Lumitein™, ProteoSilver™, SYPRO® Ruby, and Coomassie® Brilliant Blue gel stains. Methods Mol Biol, 869, 621-632. https://doi.org/10.1007/978-1-61779-821-4_57
  70. Rodríguez, M. C., Mussio, P. E., Villarraza, J., et al. (2023). Physicochemical Characterization of a Recombinant eCG and Comparative Studies with PMSG Commercial Preparations. Protein J, 42(1), 24-36. https://doi.org/10.1007/s10930-023-10092-x. EDN: https://elibrary.ru/zbvlvc
  71. Sander, S. J., Joyner, P. H., Cray, C., et al. (2016). Acute phase proteins as a marker of respiratory inflammation in Przewalski’s horse (Equus Ferus Przewalskii). J Zoo Wildl Med, 47(2), 654-658. https://doi.org/10.1638/2015-0059.1
  72. Schultze, A. E., Rohrbach, B. W., Fribourg, H. A., et al. (1999). Alterations in bovine serum biochemistry profiles associated with prolonged consumption of endophyte-infected tall fescue. Vet Hum Toxicol, 41(3), 133-139.
  73. Shan, S., Tanaka, H., & Shoyama, Y. (2001). Enzyme-linked immunosorbent assay for glycyrrhizin using anti-glycyrrhizin monoclonal antibody and an eastern blotting technique for glucuronides of glycyrrhetic acid. Anal Chem, 73(24), 5784-90. https://doi.org/10.1021/ac0106997
  74. Shibata, H., & Shibuya, A. (1995). Cholinesterase. Nihon Rinsho, 53(5), 1173-1177. (на японском языке)
  75. Shin, J. A., Yang, Y. H., Kim, H. S., et al. (2002). Genetic polymorphism of the serum proteins of horses in Jeju. J Vet Sci, 3(4), 255-263.
  76. Smith, B. J. (1984). SDS Polyacrylamide Gel Electrophoresis of Proteins. Methods Mol Biol, 41-55. https://doi.org/10.1385/0-89603-062-8
  77. Souto, P. C., Fonseca, L. A. D., Orozco, A. M. O., et al. (2019). Acute-Phase Proteins of Healthy Horses and Horses Naturally Affected by Colic Syndrome. J Equine Vet Sci, 80, 1-4. https://doi.org/10.1016/j.jevs.2019.06.002
  78. Tan, H. Y., Ng, T. W., & Liew, O. W. (2007). Effects of light spectrum in flatbed scanner densitometry of stained polyacrylamide gels. Biotechniques, 42(4), 474-478. https://doi.org/10.2144/0001124
  79. Tesena, P., Yingchutrakul, Y., Roytrakul, S., et al. (2019). Searching for serum protein markers of equine squamous gastric disease using gel electrophoresis and mass spectrometry. Equine Vet J, 51(5), 581-586. https://doi.org/10.1111/evj.13068
  80. Tomioka, Y., Nakagawa, M., Sakuma, C., et al. (2022). Analysis of bovine serum albumin unfolding in the absence and presence of ATP by SYPRO Orange staining of agarose native gel electrophoresis. Anal Biochem, 654, 114817. https://doi.org/10.1016/j.ab.2022.114817. EDN: https://elibrary.ru/gneuml
  81. Tung, J. T., Fenton, J. I., Arnold, C., et al. (2002). Recombinant equine interleukin-1beta induces putative mediators of articular cartilage degradation in equine chondrocytes. Can J Vet Res, 66(1), 19-25.
  82. Tung, J. T., Venta, P. J., Eberhart, S. W., et al. (2002). Effects of anti-arthritis preparations on gene expression and enzyme activity of cyclooxygenase-2 in cultured equine chondrocytes. Am J Vet Res, 63(8), 1134-1139. https://doi.org/10.2460/ajvr.2002.63.1134
  83. van Ginneken, M. M., Keizer, H. A., Wijnberg, I. D., et al. (2004). Immunohistochemical identification and fiber type specific localization of protein kinase C isoforms in equine skeletal muscle. Am J Vet Res, 65(1), 69-73. https://doi.org/10.2460/ajvr.2004.65.69
  84. Van Kuilenburg, A. B., Dekker, H. L., Van den Bogert, C., et al. (1991). Isoforms of human cytochrome-c oxidase. Subunit composition and steady-state kinetic properties. Eur J Biochem, 199(3), 615-622. https://doi.org/10.1111/j.1432-1033.1991.tb16162.x
  85. Vincent, S. G., Cunningham, P. R., Stephens, N. L., et al. (1997). Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software. Electrophoresis, 18(1), 67-71. https://doi.org/10.1002/elps.1150180114
  86. Welsh, J. A., Jenkins, L. M., Kepley, J., et al. (2020). High Sensitivity Protein Gel Electrophoresis Label Compatible with Mass-Spectrometry. Biosensors (Basel), 10(11), 160. https://doi.org/10.3390/bios10110160. EDN: https://elibrary.ru/qkoihl
  87. Zhang, L. H., & McManus, D. P. (1996). Purification and N-terminal amino acid sequencing of Echinococcus granulosus antigen 5. Parasite Immunol, 18(12), 597-606. https://doi.org/10.1046/j.1365-3024.1996.d01-42.x
  88. Zinellu, A., Pasciu, V., Sotgia, S., et al. (2010). Capillary electrophoresis with laser-induced fluorescence detection for ATP quantification in spermatozoa and oocytes. Anal Bioanal Chem, 398(5), 2109-2116. https://doi.org/10.1007/s00216-010-4186-6
  89. Zipplies, J. K., Hauck, S. M., Schoeffmann, S., et al. (2010). Kininogen in autoimmune uveitis: decrease in peripheral blood stream versus increase in target tissue. Invest Ophthalmol Vis Sci, 51(1), 375-382. https://doi.org/10.1167/iovs.09-4094

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».