Evaluation of fish-breeding parameters of yearlings of the F1 hybrid Acipenser gueldenstaedtii Brandt, 1833 × Acipenser baerii Brandt, 1869 with short-term introduction of probiotics of different action spectrum into the diet
- Authors: Rudoy D.V.1, Korchunov A.A.2, Olshevskaya A.V.1, Shevchenko V.N.1, Startsev A.V.2, Maltseva T.A.1, Mazanko M.S.1
-
Affiliations:
- Don State Technical University
- Southern Scientific Center of the Russian Academy of Sciences
- Issue: Vol 17, No 6-2 (2025)
- Pages: 831-847
- Section: Статьи
- Published: 30.12.2025
- URL: https://journals.rcsi.science/2658-6649/article/view/372190
- DOI: https://doi.org/10.12731/2658-6649-2025-17-6-2-1591
- EDN: https://elibrary.ru/DKWJKE
- ID: 372190
Cite item
Full Text
Abstract
Background. Under the conditions of the global shortage of accessible animal proteins, the task to develop the effective strategy aimed at the minimizing negative consequences of the production intensification and optimization of economic indicators in aquaculture becomes urgent. One of the most promising directions in this regard is the use of probiotic additives demonstrating substantial potential for increasing productivity in the farming of aquatic organisms.
Purpose. The aim of the present study was to evaluate the fish farming parameters of fingerlings of the F1 hybrid Acipenser gueldenstaedtii Brandt, 1833 x Acipenser baerii Brandt, 1869 with short-term administration of probiotics of enzymatic and antimicrobial spectrum of action into the diet.
Materials and methods. The research work was carried out in the conditions of an integrated fish farming enterprise in the Volgograd region. The material was 900 specimen of fingerlings F1 Acipenser gueldenstaedtii Brandt, 1833 x Acipenser baerii Brandt, 1869 (RoLo) at the age of 53 days, which were divided into 3 groups (control, experiment No. 1, experiment No. 2). Fish’ diet consisted of feed with a crude protein content of 56.0±1.5%. The experimental groups of fish additionally received probiotic supplements as part of their diet: experiment No. 1 – a multi-strain probiotic with an antimicrobial spectrum of action (strains Bacillus velezensis MT55, B. velezensis МТ155), experiment No. 2 – a multi-strain probiotic with an enzymatic spectrum of action (strains B. velezensis MT14, B. velezensis MT42). The compound feeds of both experimental groups contained 0.1% probiotic powder. The experiment was carried out for 10 days. To assess the fish farming criteria, morphometric characteristics of fish were measured at the beginning and end of the experiment. The significance of the differences in the obtained values was determined using the ANOVA test. The differences between the groups were considered significant at p <0.05.
Results. During 10 days of observations, a positive effect of an enzymatic probiotic (bacterial strains B. velezensis MT14, B. velezensis MT42) on the growth rate of the F1 hybrid Acipenser gueldenstaedtii Brandt, 1833 x Acipenser baerii Brandt, 1869 was established: the average individual weight of individuals receiving an enzymatic probiotic in the diet was 36.89% higher compared with the control group (p>0.05). The increase in total biomass in this group was 56.95% higher than in the control group. The values of the specific growth rate in this group of fish were also higher compared to the control and experimental group No. 1.
Conclusion. The data obtained confirm the prospects of using probiotics, especially the enzymatic spectrum of action, to intensify sturgeon aquaculture, improve their growth and reduce feed costs. The study highlights the importance of further developments in the field of specialized probiotic supplements to improve the efficiency of fish farming.
About the authors
Dmitry V. Rudoy
Don State Technical University
Author for correspondence.
Email: dmitriyrudoi@gmail.com
ORCID iD: 0000-0002-1916-8570
Scopus Author ID: 57212389828
Doctor of Engineering Sciences, Head of the Specialized organization of the territorial cluster “Dolina Dona” of the Rostov region, Dean of the Faculty “Agribusiness”, Chief Researcher of the Research laboratory “Agrobiotechnology Center”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Alexander A. Korchunov
Southern Scientific Center of the Russian Academy of Sciences
Email: aqua-group@yandex.ru
Candidate of Biological Sciences, Senior Researcher at the Laboratory of Aquatic Bioresources and Aquaculture
Russian Federation, 41, Chekhov Str., Rostov-on-Don, 344006, Russian Federation
Anastasiya V. Olshevskaya
Don State Technical University
Email: olshevskaya.av@gs.donstu.ru
ORCID iD: 0000-0001-8318-3938
Scopus Author ID: 57204675629
Candidate of Technical Sciences, Deputy Head of the Development center of the territorial cluster “Dolina Dona”, Deputy Dean for Strategic and Digital Development of the Faculty “Agribusiness”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Victoria N. Shevchenko
Don State Technical University
Email: vikakhorosheltseva@gmail.com
ORCID iD: 0000-0002-5001-4959
SPIN-code: 8026-6860
Candidate of Biological Sciences, Deputy Dean of the Faculty “Agribusiness”, Senior Researcher of the Research laboratory “Agrobiotechnology Center”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Alexander V. Startsev
Southern Scientific Center of the Russian Academy of Sciences
Email: startsev@ssc-ras.ru
Candidate of Biological Sciences, Leading Researcher at the Laboratory of Ichthyology
Russian Federation, 41, Chekhov Str., Rostov-on-Don, 344006, Russian Federation
Tatyana A. Maltseva
Don State Technical University
Email: tamaltseva.donstu@gmail.com
ORCID iD: 0000-0002-3973-6846
Scopus Author ID: 57219444434
Candidate of Engineering Sciences, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Head of the Laboratory “Biochemical and Spectral Analysis of Food Products”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
Maria S. Mazanko
Don State Technical University
Email: dmitriyrudoi@gmail.com
Candidate of Biological Sciences, Leading Researcher at the Research Laboratory “Agrobiotechnology Center”
Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation
References
- Vasilyeva, L. M. (2017). Problems and prospects for the development of sturgeon aquaculture in modern conditions. In Proceedings of the International Scientific and Practical Conference (Astrakhan, October 10–12, 2017) (pp. 7–10). EDN: https://elibrary.ru/XTSTML
- Grozesku, Yu. N., Bakhareva, A. A., & Shulga, E. A. (2009). Biological efficiency of using the probiotic Subtilis in starter compound feeds for sturgeon fish. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 11(1-2), 42–45. EDN: https://elibrary.ru/LMAVQJ
- Kononenko, S. I., & Yurina, N. A. (2016). Application of probiotics “Bacell” and “Sporotermin” in diets of juvenile sturgeon fish. Collection of Scientific Papers of the Krasnodar Scientific Center for Animal Science and Veterinary Medicine, 5(1), 71–75. EDN: https://elibrary.ru/VWLQIV
- Yurin, D. A., Osepchuk, D. V., Danilova, A. A., & Tletseruk, I. R. (2022). The effect of probiotic use on fish farming biological indicators and growth rates of sturgeon fish. Collection of Scientific Papers of the Krasnodar Scientific Center for Animal Science and Veterinary Medicine, 11(1), 100–104. https://doi.org/10.48612/sbornik-2022-1-23. EDN: https://elibrary.ru/CVRPBN
- Dawood, M. A. O., et al. (2019). Probiotic application for sustainable aquaculture. Reviews in Aquaculture, 11(3), 907–924.
- El Saadony, M. T., et al. (2021). The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 117, 36–52. https://doi.org/10.1016/j.fsi.2021.07.007. EDN: https://elibrary.ru/OTGFQC
- Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture, 180(1–2), 147–165. https://doi.org/10.1016/S0044-8486(99)00187-8. EDN: https://elibrary.ru/LULGSD
- Hoseinifar, S. H., et al. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review. Reviews in Aquaculture, 8(1), 89–102. https://doi.org/10.1111/raq.12082. EDN: https://elibrary.ru/WUYOVN
- Hotel, A. C. P., et al. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1–10.
- Irianto, A., Robertson, P. A. W., & Austin, B. (2003). Oral administration of formalin inactivated cells of Aeromonas hydrophila A3-51 controls infection by atypical A. salmonicida in goldfish, Carassius auratus (L.). Journal of Fish Diseases, 26(2). https://doi.org/10.1046/j.1365-2761.2003.00439.x. EDN: https://elibrary.ru/BEYMFX
- Llewellyn, M. S., et al. (2014). Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5, 207.
- Merrifield, D. L., et al. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18.
- Moraes, A. V., et al. (2018). Autochthonous probiotic as growth promoter and immunomodulator for Astyanax bimaculatus cultured in water recirculation system. Aquaculture Research, 49(8), 2808–2814. https://doi.org/10.1111/are.13743. EDN: https://elibrary.ru/YJRJDV
- Ridha, M. T., & Azad, I. S. (2016). Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquaculture Research, 47(9), 2757–2767.
- Rohani, M. F., et al. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology, 120, 569–589. https://doi.org/10.1016/j.fsi.2021.12.037. EDN: https://elibrary.ru/ZMDHBT
- Sayes, C., Leyton, Y., & Riquelme, C. (2018). Probiotic bacteria as an healthy alternative for fish aquaculture. In Antibiotic Use in Animals (pp. 115–132).
Supplementary files


