Alternative methods of disease prevention and treatment in aquaculture

Cover Page

Cite item

Full Text

Abstract

Background. In recent years, the use of antibiotics in aquaculture has raised increasing concern due to the development of microorganism resistance to antibacterial drugs and the negative impact on the ecosystem. Therefore, search for alternative methods for treating and preventing fish diseases has become an urgent task. Promising alternatives for the prevention and treatment of aquaculture species include the use of probiotics, prebiotics, synbiotics, postbiotics, phytobiotics, bacteriophages, and quorum sensing (QS) inhibition mechanisms. The state of the microflora of aquatic organisms is crucial for enhancing the organism’s resistance to infectious diseases. Thus, using agents that can positively influence the microbiota, exert antimicrobial effects, and modulate the immune system is essential for the effective development of the aquaculture industry. This article discusses some of the main fish diseases, the likelihood of which increases with the intensification of aquaculture. Bacteria of the genus Aeromonas are often the cause of diseases and financial losses in the industry. The work provides an overview of alternative methods for preventing and treating fish diseases that can reduce the use of antibacterial drugs, including the application of vaccines, probiotics, prebiotics, and bacteriocins.

Purpose. To investigate alternative methods of treatment and prevention of fish diseases.

Materials and methods. In the study, a method of collecting, analyzing, and systematizing of published scientific sources was used. The collection of literary information was carried out using reference databases such as Science Direct, Research Gate, Google Scholar, National Library of Medicine, Wiley Online Library, and others. To search for suitable scientific publications, keywords such as «aquaculture», «diseases», «bacterial fish diseases», «probiotics», «prebiotics», «synbiotics», «bacteriocins», «phytobiotics», and «quorum sensing» were used individually or in various combinations. The search period was limited to scientific works published between 2014 and 2024.

Results. As alternative methods, vaccination, quorum sensing inhibition, bacteriophages, as well as probiotics, prebiotics, phytobiotics, and others can be used. The state of the fish microbiome has an important impact on the likelihood of developing of infectious processes. For example, it has been reported that fish with a healthy microbiome more effectively controlled and suppressed the colonization and dissemination of bacteria of the genus Aeromonas than fish with a disrupted microbiota. Currently, probiotic microorganisms are most commonly used as agents that can influence the microflora and correct the microbial balance [36]. Probiotics are most commonly represented with bacteria, including species from cultures Bacillus sp., Lactococcus sp., Micrococcus sp., Carnobacterium sp., Enterococcus sp., Lactobacillus sp., Streptococcus and Weissella sp. Some strains of yeast and algae may be used too. Probiotics are most commonly represented with a group of lactic acid bacteria, as among all microorganisms with registered probiotic properties, they are considered to have a higher safety profile. They can produce antimicrobial substances and positively influence the immune system of the macroorganism. Probiotics used in aquaculture must undergo a special assessment to determine their potential for application, taking into account the specifics of the industry. The main spectrum of action of probiotic microorganisms in the intestines of aquatic organisms lies in their anti-adhesive effect against pathogenic strains, the production of antimicrobial substances (including bacteriocins and defensins), competition with pathogenic flora, enhancement of the host’s resistance properties, alteration of the intestinal pH level, and activation of the immune system.

Conclusion. Thus, despite the intensification of aquaculture and the increased likelihood of infectious diseases in aquaculture species, the worsening issue of antibiotic resistance and the irrational use of antibacterial drugs necessitate the development and implementation of alternative methods for controlling fish diseases.

About the authors

Besarion Ch. Meskhi

Don State Technical University

Author for correspondence.
Email: reception@donstu.ru
ORCID iD: 0000-0003-3497-3102

Doctor of Technical Sciences, Professor, Rector, Academician of the Russian Academy of Sciences

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Dmitry A. Djedirov

Don State Technical University

Email: ddjedirov@donstu.ru
SPIN-code: 9606-8971

Acting Vice-Rector for General Affairs

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Dmitry V. Rudoy

Don State Technical University

Email: dmitriyrudoi@gmail.com
ORCID iD: 0000-0002-1916-8570
Scopus Author ID: 57212389828

Doctor of Engineering Sciences, Head of the Specialized organization of the territorial cluster “Dolina Dona” of the Rostov region, Dean of the Faculty “Agribusiness”, Chief Researcher of the Research laboratory “Agrobiotechnology Center”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Victoria N. Shevchenko

Don State Technical University

Email: vikakhorosheltseva@gmail.com
ORCID iD: 0000-0002-5001-4959

Candidate of Biological Sciences, Senior Researcher of the Research laboratory “Agrobiotechnology Center”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Lilia S. Golovko

Don State Technical University

Email: liliya_s_golovko@mail.ru
ORCID iD: 0000-0001-6883-7155
SPIN-code: 6532-6105
Scopus Author ID: 57222661274

Candidate of Medical Sciences, Senior Researcher of the Research laboratory “Agrobiotechnology Center”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Anastasiya V. Olshevskaya

Don State Technical University

Email: olshevskaya.av@gs.donstu.ru
ORCID iD: 0000-0001-8318-3938
Scopus Author ID: 57204675629

Candidate of Technical Sciences, Deputy Head of the Development center of the territorial cluster “Dolina Dona”, Deputy Dean for Strategic and Digital Development of the Faculty “Agribusiness”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Mary Yu. Odabashyan

Don State Technical University

Email: modabashyan@donstu.ru
ORCID iD: 0000-0002-3371-0098
Scopus Author ID: 58078886200

Candidate of Biological Sciences, Senior Researcher of the Center for Agrobioengineering of Essential Oil and Medicinal Plants, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Scientific Leader of the Students’ scientific society “Agriculture”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Alexey S. Prutskov

Don State Technical University

Email: adelinakorob@mail.ru
ORCID iD: 0009-0001-8999-2960
Scopus Author ID: 57218097687

Engineer of the Development center of the territorial cluster “Dolina Dona”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Svetlana V. Teplyakova

Don State Technical University

Email: teplyakova.sv@gs.donstu.ru
ORCID iD: 0000-0003-4245-1523
Scopus Author ID: 57214222442

Candidate of Technical Sciences, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Senior Researcher of the Development center of the territorial cluster “Dolina Dona”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

References

  1. Naylor, R., Hardy, R., Buschmann, A., Bush, S., Cao, L., Klinger, D., Little, D., Lubchenco, J., Shumway, S., & Troell, M. (2021). Nature, 551–563. https://doi.org/10.1038/s41586-021-03308-6
  2. Pérez-Sánchez, T., & Mora-Sánchez, B. L. (2018). Trends in Microbiology, 896–903. https://doi.org/10.1016/j.tim.2018.05.002
  3. Hai, N. (2015). Journal of Applied Microbiology, 917–935. https://doi.org/10.1111/jam.12886
  4. Li, Z., Tran, N., Ji, P., Sun, Z., Wen, X., & Li, S. (2019). Fish & Shellfish Immunology, 564–573. https://doi.org/10.1016/j.fsi.2019.04.025
  5. Wee, W., Hamid, N., Mat, K., & Khalif, R. (2024). Aquaculture and Fisheries, 28–34. https://doi.org/10.1016/j.aaf.2022.02.005
  6. Oviedo-Olvera, M., Feregrino-Pérez, A. F., Nieto-Ramírez, M., Tovar-Ramírez, M., Aguirre-Becerra, H., & García-Trejo, J. (2023). Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2023.06.007
  7. El-Saadony, M., Alagawany, M., Patra, A., Kar, I., Tiwari, R., Dawood, M., Dhama, K., & Abdel-Latif, H. (2021). Fish & Shellfish Immunology, 36–52. https://doi.org/10.1016/j.fsi.2021.07.007
  8. Huynh, T.-G., Shiu, Y.-L., Nguyen, T.-P., Truong, Q.-P., Chen, J.-C., & Liu, C.-H. (2017). Fish & Shellfish Immunology, 367–382. https://doi.org/10.1016/j.fsi.2017.03.035
  9. Okey, I., Gabriel, U., & Deekae, S. (2018). Sumerianz Journal of Biotechnology, 51–60.
  10. Sudhakaran, G., Guru, A., Haridevamuthu, B., Murugan, R., Arshad, A., & Arockiaraj, J. (2022). Aquaculture Research, 3257–3273. https://doi.org/10.1111/are.15846
  11. Jana, P., Karmakar, S., Roy, U., Paul, M., Singh, A. K., & Bera, K. (2018). Journal of Entomology and Zoology Studies, 1422–1429.
  12. Ninawe, A., Sivasankari, S., Ramasamy, P., & Kiran, S. (2020). Aquaculture International, 1925–1938. https://doi.org/10.1007/s10499-020-00567-4
  13. Jayaprakashvel, M., & Subramani, R. (2019). Implication of quorum sensing and biofilm formation in medicine, agriculture and food industry. In: [Book title not specified] (pp. 299–312). https://doi.org/10.1007/978-981-32-9409-7_18
  14. El-adawy, M., Eissa, A., Shaalan, M., Ahmed, A., Karamat, N., Ismail, M., & Abdelsalam, M. (2021). Aquaculture Research, 1247–1254. https://doi.org/10.1111/are.14983
  15. Mondal, H., Chandrasekaran, N., Mukherjee, A., & Thomas, J. (2022). Aquaculture International, 227–262. https://doi.org/10.1007/s10499-021-00795-2
  16. Timi, J., & Buchmann, K. (2023). Journal of Helminthology, e4. https://doi.org/10.1017/S0022149X22000797
  17. Lindholm-Lehto, P., & Pylkkö, P. (2024). Aquaculture, Fish and Fisheries, e2200. https://doi.org/10.1002/aff2.200
  18. Bakiyev, S., & Bissenbaev, A. (2021). Experimental Biology, 4–15. https://doi.org/10.26577/eb.2021.v87.i2.01
  19. Pereira, C., Duarte, J., Costa, P., Braz, M., & Almeida, A. (2022). Antibiotics, 163. https://doi.org/10.3390/antibiotics11020163
  20. Hatje, E., Neuman, C., & Katouli, M. (2014). Applied and Environmental Microbiology, 681–686. https://doi.org/10.1128/AEM.03200-13
  21. Rods, G. P. (2014). UK standards for microbiology investigations. Public Health England.
  22. Semwal, A., Kumar, A., & Kumar, N. (2023). Heliyon, e14088. https://doi.org/10.1016/j.heliyon.2023.e14088
  23. Chen, P.-L., Lamy, B., & Ko, W.-C. (2016). Frontiers in Microbiology, 793. https://doi.org/10.3389/fmicb.2016.00793
  24. Stratev, D., & Odeyemi, O. (2017). Aquaculture International, 1095–1105. https://doi.org/10.1007/s10499-016-0100-3
  25. Monir, S., Yusoff, S., Mohamad, A., & Ina-Salwany, M. (2020). Journal of Aquatic Animal Health, 65–76. https://doi.org/10.1002/aah.10099
  26. Gallani, S., Valladão, G., Assane, I., Alves, L., Kotzent, S., Hashimoto, D., & Pilarski, F. (2020). Microbial Pathogenesis, 104512. https://doi.org/10.1016/j.micpath.2020.104512
  27. Ran, C., Qin, C., Xie, M., Zhang, J., Li, J., Xie, Y., Wang, Y., Li, S., Liu, L., Fu, X., Lin, Q., Li, N., Liles, M., & Zhou, Z. (2018). Environmental Microbiology, 3442–3456. https://doi.org/10.1111/1462-2920.14390
  28. Duman, M., Mulet, M., Altun, S., Saticioglu, I., Ozdemir, B., Ajmi, N., Lalucat, J., & García-Valdés, E. (2021). Aquaculture, 736369. https://doi.org/10.1016/j.aquaculture.2021.736369
  29. Milivojevic, D., Šumonja, N., Medic, S., Pavic, A., Moric, I., Vasiljevic, B., Senerovic, L., & Nikodinovic-Runic, J. (2018). Pathogens and Disease. https://doi.org/10.1093/femspd/fty041
  30. Paczkowski, J., Mukherjee, S., McCready, A., Cong, J.-P., Aquino, C., Kim, H., Henke, B., Smith, C., & Bassler, B. (2017). Journal of Biological Chemistry, 4064–4076. https://doi.org/10.1074/jbc.M116.770552
  31. Osman, K., Da Silva Pires, Á. L., Franco, O., Saad, A., Naim, H., Ali, A., & Elbehiry, A. (2021). Aquaculture, 736068. https://doi.org/10.1016/j.aquaculture.2020.736068
  32. Lalucat, J., Mulet, M., Gomila, M., & García-Valdés, E. (2020). Genes, 139. https://doi.org/10.3390/genes11020139
  33. Santos, L., & Ramos, F. (2018). International Journal of Antimicrobial Agents, 135–143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
  34. Narayanan, S., Joseph, T., Peeralil, S., Koombankallil, R., Vaiyapuri, M., Mothadaka, M., & Lalitha, K. (2020). Marine Pollution Bulletin, 111551. https://doi.org/10.1016/j.marpolbul.2020.111551
  35. Nguyen, H. T. V., Nguyen, H. H., Smooker, P., Shimeta, J., & Coloe, P. (2014). Veterinary Microbiology, 397–405. https://doi.org/10.1016/j.vetmic.2014.01.028
  36. Bondad-Reantaso, M., MacKinnon, B., Karunasagar, I., Fridman, S., Alday-Sanz, V., Brun, E., Le Groumellec, M., Li, A., Surachetpong, W., Karunasagar, I., Hao, B., Dall’Occo, A., Urbani, R., & Caputo, A. (2023). Reviews in Aquaculture, 1421–1451. https://doi.org/10.1111/raq.12786
  37. Montalban-Arques, A., De Schryver, P., Bossier, P., Gorkiewicz, G., Mulero, V., Gatlin, D., & Galindo-Villegas, J. (2015). Frontiers in Immunology, 512. https://doi.org/10.3389/fimmu.2015.00512
  38. Moya, A., & Ferrer, M. (2016). Trends in Microbiology, 402–413. https://doi.org/10.1016/j.tim.2016.02.002
  39. Li, T., Long, M., Ji, C., Shen, Z., Gatesoupe, F.-J., Zhang, X., Zhang, Q., Zhang, L., Zhao, Y., Liu, X., & Li, A. (2016). Scientific Reports, 1–9. https://doi.org/10.1038/srep30606
  40. Gheziel, C., Russo, P., Arena, M., Spano, G., Ouzari, H.-I., Kheroua, O., Saidi, D., Fiocco, D., Kaddouri, H., & Capozzi, V. (2019). Probiotics and Antimicrobial Proteins, 113–123. https://doi.org/10.1007/s12602-018-9396-9
  41. Singhal, N., Singh, N., Singh, S., & Virdi, J. (2019). Indian Journal of Microbiology, 112–115. https://doi.org/10.1007/s12088-018-0762-9
  42. Pereira, W., Mendonça, C., Urquiza, A., Marteinsson, V., LeBlanc, J., Cotter, P., Villalobos, E., Romero, J., & Oliveira, R. (2022). Microorganisms, 1705. https://doi.org/10.3390/microorganisms10091705
  43. Goh, J., Tan, L., Law, J., Ser, H.-L., Khaw, K.-Y., Letchumanan, V., Lee, L.-H., & Goh, B.-H. (2022). Reviews in Aquaculture, 1–80. https://doi.org/10.1111/raq.12659
  44. Catalán, N., Villasante, A., Wacyk, J., Ramírez, C., & Romero, J. (2017). Probiotics and Antimicrobial Proteins, 566–576. https://doi.org/10.1007/s12602-017-9366-7
  45. Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Frontiers in Microbiology, 241. https://doi.org/10.3389/fmicb.2014.00241

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).