Bacteriocins for agriculture and aquaculture

Cover Page

Cite item

Full Text

Abstract

Background. The aggravation of the problem of antimicrobial resistance caused by the irrational use of antibiotics in agriculture and aquaculture necessitates the search for sustainable and safe alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides of bacterial origin. A class of natural compounds for combating resistant pathogens with minimal environmental impact. This review explores the complex potential of using bacteriocins as an alternative to antibiotics. A detailed analysis of the structural diversity, classification approaches, and established mechanisms of antimicrobial action was carried out, including disruption of cell membrane integrity, inhibition of cell wall synthesis, and inhibition of nucleic acid and protein production. Key bacteriocin-producing genera (Bacillus, Streptomyces, and Pseudomonas) and their biologically active metabolites have been identified. The analysis of bacteriocins’ use in agriculture, in particular their role as agents of biocontrol of phytopathogens, plant growth promoters, as well as means of improving the health and productivity of farm animals and birds. Their potential in aquaculture for disease control (directed against pathogens such as Vibrio spp., Aeromonas spp., Yersinia ruckeri), water quality improvement, and feed conservation is considered, which helps reduce dependence on the preventive use of antibiotics. Despite significant achievements, challenges remain related to in vivo efficacy assessment, development of delivery systems, the possibility of resistance development, and regulatory aspects. Addressing these issues is a key condition for realizing the potential of bacteriocins as environmentally sound tools for ensuring food security and sustainable development of terrestrial and aquaculture systems.

Purpose. The aim of this review is to comprehensively analyze the potential of bacteriocins as a sustainable alternative to antibiotics in agriculture and aquaculture. This involves summarizing current knowledge on their structural diversity, classification, mechanisms of antimicrobial action, key producer genera, and practical applications in crop production, livestock farming, and aquaculture disease management.

Materials and methods. This study is a descriptive review. The material for the analysis was composed of contemporary scientific literature sourced from databases such as PubMed, Scopus, and Google Scholar. The methodology included a systematic search, selection, and critical analysis of publications focusing on bacteriocin production, classification, mechanisms of action, and their applications in terrestrial and aquatic agricultural systems. The review synthesizes data from in vitro and in vivo studies to present a holistic overview of the field.

Results. The analysis reveals the significant structural and functional diversity of bacteriocins, which can be classified into several classes (e.g., lantibiotics, unmodified peptides) based on genetic and structural criteria. Their antimicrobial mechanisms are multifaceted, primarily involving pore formation in target cell membranes, inhibition of cell wall synthesis (e.g., via lipid II binding), and disruption of nucleic acid and protein synthesis. Key soil-derived genera, including BacillusStreptomyces, and Pseudomonas, are prolific producers of diverse bacteriocins with activity against major plant, animal, and aquatic pathogens (e.g., Listeria, MRSA, Aeromonasand Vibrio). In agriculture, bacteriocins demonstrate potential as biocontrol agents against phytopathogens and as plant growth promoters. In aquaculture, their applications span disease control, water quality improvement, feed preservation, and use as probiotic supplements, contributing to enhanced animal health and reduced reliance on prophylactic antibiotics.

Conclusion. Bacteriocins emerge as a highly promising and environmentally sound tool for enhancing the sustainability and productivity of both terrestrial and aquatic agricultural systems. Their targeted activity against key pathogens, role in biocontrol and growth stimulation, and ability to preserve product quality with minimal impact on beneficial microbiota underscore their potential. However, translating this potential into practical, scalable solutions necessitates addressing several challenges. Future efforts must focus on robust in vivo efficacy testing, the development of effective delivery systems, understanding the risks of resistance development, and navigating the regulatory landscape. Interdisciplinary research is crucial to bridge the gap between laboratory findings and field application.

About the authors

Besarion Ch. Meskhi

Don State Technical University

Email: reception@donstu.ru
ORCID iD: 0000-0003-3497-3102

Doctor of Technical Sciences, Professor, Rector, Academician of the Russian Academy of Sciences

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Dmitry V. Rudoy

Don State Technical University

Email: dmitriyrudoi@gmail.com
ORCID iD: 0000-0002-1916-8570
Scopus Author ID: 57212389828

Doctor of Engineering Sciences, Head of the Specialized organization of the territorial cluster “Dolina Dona” of the Rostov region, Dean of the Faculty “Agribusiness”, Chief Researcher of the Research laboratory “Agrobiotechnology Center”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Anastasiya V. Olshevskaya

Don State Technical University

Email: olshevskaya.av@gs.donstu.ru
ORCID iD: 0000-0001-8318-3938
Scopus Author ID: 57204675629

Candidate of Technical Sciences, Deputy Head of the Development center of the territorial cluster “Dolina Dona”, Deputy Dean for Strategic and Digital Development of the Faculty “Agribusiness”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Denis A. Kozyrev

Don State Technical University

Email: dinis.kozyrev@bk.ru
ORCID iD: 0000-0003-1202-6622
SPIN-code: 1871-6987
ResearcherId: E-9058-2019

Candidate of Biological Sciences

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Victoria N. Shevchenko

Don State Technical University

Author for correspondence.
Email: vikakhorosheltseva@gmail.com
ORCID iD: 0000-0002-5001-4959
Scopus Author ID: 1031771

Candidate of Biological Sciences, Deputy Dean of the Faculty “Agribusiness”, Senior Researcher of the Research Laboratory “Agrobiotechnology Center”

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Mary Yu. Odabashyan

Don State Technical University

Email: modabashyan@donstu.ru
ORCID iD: 0000-0002-3371-0098
SPIN-code: 5866-4856
Scopus Author ID: 58078886200

Candidate of Biological Sciences, Deputy Dean of the Faculty “Agribusiness”, Senior Researcher of the Center for Agrobioengineering of Essential Oil and Medicinal Plants, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Svetlana V. Teplyakova

Don State Technical University

Email: teplyakova.sv@gs.donstu.ru
ORCID iD: 0000-0003-4245-1523
SPIN-code: 5088-2149
Scopus Author ID: 57214222442

Candidate of Technical Sciences, Deputy Dean of the Faculty “Agribusiness”, Associate Professor of the Department “Technologies and Equipment for Processing Agricultural Products”, Senior Researcher of the Development Center of the Territorial Cluster “Dolina Dona”

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

Dmitry A. Dzhedirov

Don State Technical University

Email: ddjedirov@donstu.ru
SPIN-code: 9606-8971

Acting Vice-Rector for General Affairs

 

Russian Federation, 1, Gagarin Sq., 1, Rostov-on-Don, 344000, Russian Federation

References

  1. Abdelhamed, H., Lawrence, M. L., & Karsi, A. (2018). Development and characterization of a novel live attenuated vaccine against enteric septicemia of catfish. Frontiers in Microbiology, 9, 1819. https://doi.org/10.3389/fmicb.2018.01819
  2. Adedire, O. M., & Odeniyi, O. A. (2017). Antimicrobial activities of bacteriocin-like extracellular metabolites produced by soil bacteria. Pharmaceutical and Biosciences Journal, 47–54.
  3. Akter, N., Hashim, R., Pham, H. Q., Choi, S. D., Lee, D. W., Shin, J. H., & Rajagopal, K. (2020). Lactobacillus acidophilus antimicrobial peptide is antagonistic to Aeromonas hydrophila. Frontiers in Microbiology, 11, 570851. https://doi.org/10.3389/fmicb.2020.570851. EDN: https://elibrary.ru/KKMEDC
  4. Alaoui Mdarhri, H., Benmessaoud, R., Yacoubi, H., Seffar, L., Guennouni Assimi, H., Hamam, M., & Kettani-Halabi, M. (2022). Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics, 11(12), 1826. https://doi.org/10.3390/antibiotics11121826. EDN: https://elibrary.ru/GVKRCL
  5. Alam, M. T., Merlo, M. E., Takano, E., & Breitling, R. (2010). Genome-based phylogenetic analysis of Streptomyces and its relatives. Molecular Phylogenetics and Evolution, 54(3), 763–772. https://doi.org/10.1016/j.ympev.2009.11.019. EDN: https://elibrary.ru/NZHMUR
  6. Alfatat, A., Amoah, K., Cai, J., Huang, Y., Fachri, M., Lauden, H. N., & Syaifiuddin, S. (2025). Sustainable aquaculture and sea ranching with the use of vaccines: A review. Frontiers in Marine Science, 11, 1526425. https://doi.org/10.3389/fmars.2024.1526425. EDN: https://elibrary.ru/TIZTVQ
  7. Andryukov, B. G., Mikhaylov, V. V., Besednova, N. N., Zaporozhets, T. S., Bynina, M. P., & Matosova, E. V. (2018). The bacteriocinogenic potential of marine microorganisms. Russian Journal of Marine Biology, 44(6), 433–441. https://doi.org/10.1134/S1063074018060030. EDN: https://elibrary.ru/WUBAVN
  8. Ansari, A., Zohra, R. R., Tarar, O. M., Qader, S. A. U., & Aman, A. (2018). Screening, purification and characterization of thermostable, protease resistant bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiology, 18, 192. https://doi.org/10.1186/s12866-018-1321-6. EDN: https://elibrary.ru/BHCEUM
  9. Arbulu, S., & Kjos, M. (2024). Revisiting the multifaceted roles of bacteriocins. Microbial Ecology, 87, 41. https://doi.org/10.1007/s00248-024-02357-4. EDN: https://elibrary.ru/PUERUB
  10. Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., & Cotter, P. D. (2013). Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Natural Product Reports, 30(1), 108–160. https://doi.org/10.1039/C2NP20085F. EDN: https://elibrary.ru/RIJUXR
  11. Aunpad, R., Sripong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., & Pipatsatitpong, D. (2011). Isolation and characterization of bacteriocin with anti-Listeria and anti-MRSA activity produced by food and soil isolated bacteria. African Journal of Microbiology Research, 5(24), 5297–5303. https://doi.org/10.5897/AJMR11.714
  12. Bai, Y., Zhou, X., & Smith, D. L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5), 1774–1781. https://doi.org/10.2135/cropsci2003.1774
  13. Ben Lagha, A., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, 22. https://doi.org/10.1186/s13567-017-0425-6. EDN: https://elibrary.ru/XFQDMM
  14. Berić, T., Stanković, S., Draganić, V., Kojić, M., Lozo, J., & Fira, D. (2014). Novel antilisterial bacteriocin Licheniocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. Journal of Applied Microbiology, 116(3), 502–510. https://doi.org/10.1111/jam.12387
  15. Bhattacharyya, A., Mavrodi, O., Bhowmik, N., Weller, D., Thomashow, L., & Mavrodi, D. (2023). Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. In Methods in Microbiology (pp. 3–48). Academic Press. https://doi.org/10.1016/bs.mim.2023.05.006
  16. Bizani, D., Motta, A. S., Morrissy, J. A., Terra, R. M. S., Souto, A. A., & Brandelli, A. (2005). Antibacterial activity of Cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. International Microbiology, 8(2), 125–131. EDN: https://elibrary.ru/LVNOJB
  17. Butt, U. D., Khan, S., Liu, X., Sharma, A., Zhang, X., & Wu, B. (2024). Present status, limitations, and prospects of using Streptomyces bacteria as a potential probiotic agent in aquaculture. Probiotics and Antimicrobial Proteins, 16, 426–442. https://doi.org/10.1007/s12602-023-10155-6
  18. Chepsergon, J., & Moleleki, L. N. (2023). Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 73, 102297. https://doi.org/10.1016/j.mib.2023.102297. EDN: https://elibrary.ru/YELOGU
  19. Chen, X., Liu, H., Liu, S., & Mao, J. (2024). Impact of bacteriocins on multidrug-resistant bacteria and their application in aquaculture disease prevention and control. Reviews in Aquaculture, 16(3), 1286–1307. https://doi.org/10.1111/raq.12896. EDN: https://elibrary.ru/HCIVPR
  20. Cheruvari, A., & Kammara, R. (2025). Bacteriocins future perspectives: Substitutes to antibiotics. Food Control, 168, 110834. https://doi.org/10.1016/j.foodcont.2025.110834. EDN: https://elibrary.ru/UFEDEK
  21. Cintas, L. M., Casaus, M. P., Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7(4), 281–305. https://doi.org/10.1106/R8DEP6HU-CLXP-5RYT
  22. Colorni, A. (1992). A systemic mycobacteriosis in the European sea bass Dicentrarchus labrax cultured in Eilat (Red Sea). Israeli Journal of Aquaculture-Bamidgeh, 44, 75–81.
  23. Contente, D., Díaz-Rosales, P., Feito, J., Díaz-Formoso, L., Docando, F., Simón, R., & Tafalla, C. (2023). Immunomodulatory effects of bacteriocinogenic and non-bacteriocinogenic Lactococcus cremoris of aquatic origin on rainbow trout (Oncorhynchus mykiss, Walbaum). Frontiers in Immunology, 14, 1178462. https://doi.org/10.3389/fimmu.2023.1178462. EDN: https://elibrary.ru/GKJTJQ
  24. Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), e0171642. https://doi.org/10.1371/journal.pone.0171642
  25. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777–788. https://doi.org/10.1038/nrmicro1273. EDN: https://elibrary.ru/LSKYHJ
  26. Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocins — a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937. EDN: https://elibrary.ru/RGZIDF
  27. Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093. https://doi.org/10.1002/jcla.24093. EDN: https://elibrary.ru/WVQQDT
  28. de Freire Bastos, M. C., Coelho, M. L. V., & da Silva Santos, O. C. (2015). Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology, 161(4), 683–700. https://doi.org/10.1099/mic.0.082289-0
  29. Delghandi, M. R., El-Matbouli, M., & Menanteau-Ledouble, S. (2020). Renibacterium salmoninarum — The causative agent of bacterial kidney disease in salmonid fish. Pathogens, 9(10), 845. https://doi.org/10.3390/pathogens9100845. EDN: https://elibrary.ru/EGDNVG
  30. Diamant, A., Banet, A., Ucko, M., Colorni, A., Knibb, W., & Kvitt, H. (2000). Mycobacteriosis in wild rabbitfish Siganus rivulatus associated with cage farming in the Gulf of Eilat, Red Sea. Diseases of Aquatic Organisms, 39, 211–219. https://doi.org/10.3354/dao039211
  31. Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 37(4), 355–366. https://doi.org/10.1080/03079450802216652
  32. Fathizadeh, H., Pakdel, F., Saffari, M., Esmaeili, D., Heravi, M. M., Dao, S., Ganbarov, K., & Kafil, H. S. (2022). Bacteriocins: Recent advances in its application as an antimicrobial alternative. Current Pharmaceutical Biotechnology, 23(8), 1028–1040. https://doi.org/10.2174/1389201022666210907121254. EDN: https://elibrary.ru/HMNLHQ
  33. Fischer, S., López-Ramírez, V., & Asconapé, J. (2024). Historical advancements in understanding bacteriocins produced by rhizobacteria for their application in agriculture. Rhizosphere, 29, 100908. https://doi.org/10.1016/j.rhisph.2024.100908. EDN: https://elibrary.ru/RXOEMR
  34. Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1–2), 51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  35. Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46(7), 2355–2364. https://doi.org/10.1016/j.watres.2012.02.004
  36. Gholizadeh, S. S., Baserisalehi, M., & Bahador, N. (2013). Study on bioactive compounds produced by soil origin Brevibacillus spp. Nature Environment and Pollution Technology, 12(2), 209–214.
  37. Gray, E. J., Di Falco, M., Souleimanov, A., & Smith, D. L. (2006). Proteomic analysis of the bacteriocin Thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiology Letters, 255(1), 27–32. https://doi.org/10.1111/j.1574-6968.2005.00054.x
  38. Gu, Q. (2023). Agriculture. In Bacteriocins (pp. 127–152). Springer. https://doi.org/10.1007/978-981-99-2661-9_7
  39. Güllüce, M., Karadayı, M., & Barış, Ö. (2013). Bacteriocins: Promising natural antimicrobials. Local Environment, 3(8), 1016–1027.
  40. Hafeez, F. Y., Naeem, F. I., Naeem, R., Zaidi, A. H., & Malik, K. A. (2005). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environmental and Experimental Botany, 54(2), 142–147. https://doi.org/10.1016/j.envexpbot.2004.06.009
  41. He, L., Chen, W., & Liu, Y. (2006). Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12. Microbiological Research, 161(4), 321–326. https://doi.org/10.1016/j.micres.2005.12.003
  42. Heinzinger, L. R., Pugh, A. R., Wagner, J. A., & Otto, M. (2023). Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics, 12(8), 1256. https://doi.org/10.3390/antibiotics12081256. EDN: https://elibrary.ru/PVHBCP
  43. Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92(2), 370–374. https://doi.org/10.3382/ps.2012-02528
  44. Jayasree, L., Janakiram, P., & Madhavi, R. (2006). Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). Journal of the World Aquaculture Society, 37(4), 523–532. https://doi.org/10.1111/j.1749-7345.2006.00066.x
  45. Jones, S. E., & Elliot, M. A. (2017). Streptomyces exploration: Competition, volatile communication and new bacterial behaviours. Trends in Microbiology, 25(6), 522–531. https://doi.org/10.1016/j.tim.2017.02.001
  46. Józefiak, D., Kierończyk, B., Juśkiewicz, J., Zduńczyk, Z., Rawski, M., Długosz, J., & Højberg, O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS ONE, 8(12), e85347. https://doi.org/10.1371/journal.pone.0085347. EDN: https://elibrary.ru/SOYWEH
  47. Kamoun, F., Mejdoub, H., Aouissaoui, H., Reinbolt, J., Hammami, A., & Jaoua, S. (2005). Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology, 98(4), 881–888. https://doi.org/10.1111/j.1365-2672.2004.02522.x
  48. Kemung, H. M., Tan, L. T. H., Khan, T. M., Chan, K. G., Pusparajah, P., Goh, B. H., & Lee, L. H. (2018). Streptomyces as a prominent resource of future anti-MRSA drugs. Frontiers in Microbiology, 9, 2221. https://doi.org/10.3389/fmicb.2018.02221
  49. Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1–3), 39–85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  50. Klein, E. Y., Van Boeckel, T. P., Martinez, E. P., Pant, S., Gandra, S., Levin, S. A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 115(15), E3463–E3470. https://doi.org/10.1073/pnas.1717295115. EDN: https://elibrary.ru/EIOTNZ
  51. Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171–177. https://doi.org/10.1016/j.micpath.2018.12.039
  52. Lafuente, I., Sevillano, E., Peña, N., Cuartero, A., Hernández, P. E., Cintas, L. M., & Borrero, J. (2024). Production of Pumilarin and a novel circular bacteriocin, Altitudin A, by Bacillus altitudinis ECC22, a soil-derived bacteriocin producer. International Journal of Molecular Sciences, 25(4), 2020. https://doi.org/10.3390/ijms25042020. EDN: https://elibrary.ru/JSHFCH
  53. Laxminarayan, R., Van Boeckel, T. P., & Teillant, A. (2015). The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. OECD Food, Agriculture and Fisheries Papers, 78, 1–45. https://doi.org/10.1785/5js64kst5wvl-en
  54. Lee, K., Gray, E. J., Mabood, F., Jung, W.-J., Charles, T., Clark, S. R. D., & Smith, D. L. (2009). The Class IId bacteriocin Thuricin-17 increases plant growth. Planta, 229(4), 747–755. https://doi.org/10.1007/s00425-008-0870-6. EDN: https://elibrary.ru/YIVVPG
  55. Li, Y., Yan, J., Chen, Z., Gu, Q., & Li, P. (2022). Antibacterial effects of bacteriocin PLNC8 against Helicobacter pylori and its potential mechanism of action. Foods, 11(9), 1235. https://doi.org/10.3390/foods11091235. EDN:
  56. Liu, G., Nie, R., Liu, Y., Li, X., Duan, J., Hao, X., & Zhang, J. (2022). Bacillus subtilis BS-15 effectively improves Plantaricin production and the regulatory biosynthesis in Lactiplantibacillus plantarum RX-8. Frontiers in Microbiology, 12, 772546. https://doi.org/10.3389/fmicb.2021.772546. EDN: https://elibrary.ru/CTZAFU
  57. Liu, S., Deng, S., Liu, H., Tang, L., Wang, M., Xin, B., & Li, F. (2022). Four novel leaderless bacteriocins, Bacin A1, A2, A3, and A4 exhibit potent antimicrobial and antibiofilm activities against methicillin-resistant Staphylococcus aureus. Microbiology Spectrum, 10(3), e00945-22. https://doi.org/10.1128/spectrum.00945-22. EDN: https://elibrary.ru/EPQRNV
  58. Lotz, W., & Mayer, F. (1972). Isolation and characterization of a bacteriophage tail-like bacteriocin from a strain of Rhizobium. Journal of Virology, 9(1), 160–173.
  59. Mann, A., Nehra, K., Rana, J. S., & Dahiya, T. (2021). Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences, 2, 100030. https://doi.org/10.1016/j.crmicr.2021.100030. EDN: https://elibrary.ru/QGCSYY
  60. Marković, K. G., Grujović, M. Ž., Koraćević, M. G., Nikodijević, D. D., Milutinović, M., Semedo-Lemsaddek, T., & Djilas, M. (2022). Colicins and microcins produced by Enterobacteriaceae: Characterization, mode of action, and putative applications. International Journal of Environmental Research and Public Health, 19(18), 11825. https://doi.org/10.3390/ijerph191811825. EDN: https://elibrary.ru/IZKDNJ
  61. Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(10), 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051
  62. Martínez, B., García, P., & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 56, 1–6. https://doi.org/10.1016/j.copbio.2 Newton.07.007. EDN: https://elibrary.ru/YKCBRB
  63. Mazurek-Popczyk, J., Pisarska, J., Bok, E., & Baldy-Chudzik, K. (2020). Antibacterial activity of bacteriocinogenic commensal Escherichia coli against zoonotic strains resistant and sensitive to antibiotics. Antibiotics, 9(7), 411. https://doi.org/10.3390/antibiotics9070411. EDN: https://elibrary.ru/HSSJWX
  64. Mercado, V., & Olmos, J. (2022). Bacteriocin production by Bacillus species: Isolation, characterization, and application. Probiotics and Antimicrobial Proteins, 14(6), 1151–1169. https://doi.org/10.1007/s12602-022-09966-w. EDN: https://elibrary.ru/WTDSGD
  65. Mohamad, A., Zamri-Saad, M., Amal, M. N. A., Al-Saari, N., Monir, M. S., Chin, Y. K., & Md Yasin, I. S. (2021). Vaccine efficacy of a newly developed feed-based whole-cell polyvalent vaccine against vibriosis, streptococcosis and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Vaccines, 9(4), 368. https://doi.org/10.3390/vaccines9040368. EDN: https://elibrary.ru/LHFQDC
  66. Mojgani, N. (2017). Bacteriocin-producing rhizosphere bacteria and their potential as a biocontrol agent. In V. Meena, P. Mishra, J. Bisht, & A. Pattanayak (Eds.), Rhizotrophs: Plant Growth Promotion to Bioremediation (pp. 165–181). Springer. https://doi.org/10.1007/978-981-10-4862-3_8
  67. Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), 1255. https://doi.org/ 10.3390/molecules22081255
  68. Nazari, M., & Smith, D. L. (2020). A PGPR-produced bacteriocin for sustainable agriculture: A review of Thuricin 17 characteristics and applications. Frontiers in Plant Science, 11, 916. https://doi.org/10.3389/fpls.2020.00916. EDN: https://elibrary.ru/HRLYMR
  69. Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891. https://doi.org/10.1155/2020/4374891. EDN: https://elibrary.ru/FEXAVK
  70. Newman, S. G. (1993). Bacterial vaccines for fish. Annual Review of Fish Diseases, 3, 145–185. https://doi.org/10.1016/0959-8030(93)90033-5
  71. Nilsson, L., Huss, H. H., & Gram, L. (1997). Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere. International Journal of Food Microbiology, 38(2–3), 217–227. https://doi.org/10.1016/S0168-1605(97)00105-6
  72. Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2004). Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World Journal of Microbiology and Biotechnology, 20(1), 51–56. https://doi.org/10.1023/B
  73. Oscáriz, J. C., & Pisabarro, A. G. (2000). Characterisation and mechanism of action of Cerein 7, a bacteriocin produced by Bacillus cereus Bc7. Journal of Applied Microbiology, 89(1), 1–10. https://doi.org/10.1046/j.1365-2672.2000.01064.x
  74. Paškevičius, Š., Gleba, Y., & Ražanskienė, A. (2022). Stenocins: Novel modular bacteriocins from opportunistic pathogen Stenotrophomonas maltophilia. Journal of Biotechnology, 351, 9–12. https://doi.org/10.1016/j.jbiotec.2022.05.002. EDN: https://elibrary.ru/CNPQRJ
  75. Pereira, W. A., Mendonça, C. M. N., Urquiza, A. V., Marteinsson, V.Þ., LeBlanc, J. G., Cotter, P. D., & Oliveira, R. P. S. (2022). Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms, 10(9), 1705. https://doi.org/10.3390/microorganisms10091705. EDN: https://elibrary.ru/ORKPDO
  76. Pfister, H., & Lodderstaedt, G. (1977). Adsorption of a phage tail-like bacteriocin to isolated lipopolysaccharide of Rhizobium. Journal of General Virology, 37(2), 337–347. https://doi.org/10.1099/0022-1317-37-2-337
  77. Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75(9), 1497–1517. https://doi.org/10.2478/s11756-020-00456-4. EDN: https://elibrary.ru/LEKYQZ
  78. Prudent, M., Salon, C., Souleimanov, A., Emery, R. J. N., & Smith, D. L. (2014). Soybean is less impacted by water stress using Bradyrhizobium japonicum and Thuricin-17 from Bacillus thuringiensis. Agronomy for Sustainable Development, 35(2), 749–757. https://doi.org/10.1007/s13593-014-0256-z. EDN: https://elibrary.ru/URWTDX
  79. Promrug, D., Wittayacom, K., Nathapanan, N., Dong, H. T., Thongyoo, P., Unajak, S., & Arthan, D. (2023). Cocultures of Enterococcus faecium and Aeromonas veronii induce the secretion of bacteriocin-like substances against Aeromonas. Journal of Agricultural and Food Chemistry, 71(43), 16194–16203. https://doi.org/10.1021/acs.jafc.3c04927. EDN: https://elibrary.ru/TNSZKC
  80. Qin, Y., Wang, Y., He, Y., Zhang, Y., She, Q., Chai, Y., & Shang, Q. (2019). Characterization of Subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Frontiers in Microbiology, 10, 484. https://doi.org/10.3389/fmicb.2019.00484
  81. Rabetafika, H. N., Razafindralambo, A., Ebenso, B., & Razafindralambo, H. L. (2023). Probiotics as antibiotic alternatives for human and animal applications. Encyclopedia, 3(2), 561–581. https://doi.org/10.3390/encyclopedia3020039. EDN: https://elibrary.ru/YWWWKF
  82. Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology, 56, 117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024. EDN: https://elibrary.ru/GKPWIN
  83. Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1), 1–27. https://doi.org/10.1016/j.aaf.2019.12.001. EDN: https://elibrary.ru/QPXDYY
  84. Saleem, F., Ahmad, S., Yaqoob, Z., & Rasool, S. A. (2009). Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pakistan Journal of Pharmaceutical Sciences, 22(3), 251–259.
  85. Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55–66. https://doi.org/10.1016/S0929-1393(02)00109-1. EDN: https://elibrary.ru/BBSNLZ
  86. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026. EDN: https://elibrary.ru/KHZQVP
  87. Schofs, L., Sparo, M. D., & Sánchez Bruni, S. F. (2020). Gram-positive bacteriocins: Usage as antimicrobial agents in veterinary medicine. Veterinary Research Communications, 44(3–4), 89–100. https://doi.org/10.1007/s11259-020-09777-w. EDN: https://elibrary.ru/SSYWJX
  88. Shafique, B., Ranjha, M. M. A. N., Murtaza, M. A., Walayat, N., Nawaz, A., Khalid, W., & Ameer, K. (2023). Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms, 11(1), 85. https://doi.org/10.3390/microorganisms11010085. EDN: https://elibrary.ru/PTCCFJ
  89. Sharma, K., Kaur, S., Singh, R., & Kumar, N. (2021). Classification and mechanism of bacteriocin induced cell death: A review. Journal of Microbiology, Biotechnology and Food Sciences, 11(1), e3733. https://doi.org/10.55251/jmbfs.3733. EDN: https://elibrary.ru/LJGJAW
  90. Solis-Balandra, M. A., & Sanchez-Salas, J. L. (2024). Classification and multi-functional use of bacteriocins in health, biotechnology, and food industry. Antibiotics, 13(7), 666. https://doi.org/10.3390/antibiotics13070666. EDN: https://elibrary.ru/RLBQRA
  91. Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89–101. https://doi.org/10.1586/14760584.4.1.89
  92. Subramanian, S. (2014). Mass spectometry based proteome profiling to understand the effects of lipo-chito-oligasaccharide and thuricin 17 in Arabidopsis thaliana and Glycine max under salt stress (Master’s thesis). McGill University, Montreal, QC, Canada.
  93. Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome—From an agriculture perspective. Frontiers in Plant Science, 6, 909. https://doi.org/10.3389/fpls.2015.00909
  94. Sugrue, I., Ross, R. P., & Hill, C. (2024). Bacteriocin diversity, function, discovery and application as antimicrobials. Nature Reviews Microbiology, 22(9), 556–571. https://doi.org/10.1038/s41579-024-01038-w. EDN: https://elibrary.ru/TAGRWG
  95. Sumon, T. A., Hussain, M. A., Sumon, M. A. A., Jang, W. J., Abellan, F. G., Sharifuzzaman, S. M., et al. (2022). Functionality and prophylactic role of probiotics in shellfish aquaculture. Aquaculture Reports, 25, 101220. https://doi.org/10.1016/j.aqrep.2022.101220. EDN: https://elibrary.ru/JLRHHQ
  96. Takeuchi, M., Fujiwara-Nagata, E., Katayama, T., & Suetake, H. (2021). Skin bacteria of rainbow trout antagonistic to the fish pathogen Flavobacterium psychrophilum. Scientific Reports, 11(1), 7518. https://doi.org/10.1038/s41598-021-87107-z. EDN: https://elibrary.ru/QYKSHZ
  97. Timbermont, L., De Smet, L., Van Nieuwerburgh, F., Parreira, V. R., Van Driessche, G., Haesebrouck, F., & Van Immerseel, F. (2014). Perfrin, a novel bacteriocin associated with NetB positive Clostridium perfringens strains from broilers with necrotic enteritis. Veterinary Research, 45(1), 40. https://doi.org/10.1186/1297-9716-45-40. EDN: https://elibrary.ru/YLZGSJ
  98. Torshin, I. Y., & Gromova, O. A. (2023). Comparative chemomicrobiomic analysis of bacteriocins. Farmakoekonomika, 16(4), 643–656. https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.192. EDN: https://elibrary.ru/IESGDO
  99. Toranzo, A. E., Romalde, J. L., Magariños, B., & Barja, J. L. (2009). Present and future of aquaculture vaccines against fish bacterial diseases. Options Méditerranéennes, 86, 155–176.
  100. Triet, T. H., Tinh, B. T., Hau, L. V., Huong, T. V., & Binh, N. Q. (2019). Development and potential use of an Edwardsiella ictaluri wzz mutant as a live attenuated vaccine against enteric septicemia in Pangasius hypophthalmus (Tra catfish). Fish & Shellfish Immunology, 87, 87–95. https://doi.org/10.1016/j.fsi.2019.01.013
  101. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
  102. Vacheron, J., Heiman, C. M., & Keel, C. (2021). Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion. Communications Biology, 4(1), 87. https://doi.org/10.1038/s42003-020-01581-1. EDN: https://elibrary.ru/NPULSE
  103. Verheul, A., Russell, N. J., van ’t Hof, R., Rombouts, F. M., & Abee, T. (1997). Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Applied and Environmental Microbiology, 63(9), 3451–3457. https://doi.org/10.1128/aem.63.9.3451-3457.1997
  104. Vilpišauskaitė, A. (2023). Bacteriocins active against plant pathogenic bacteria (Doctoral dissertation). Vilnius University, Vilnius, Lithuania.
  105. Wang, J., Zhang, S., Ouyang, Y., & Li, R. (2019). Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatalysis and Agricultural Biotechnology, 22, 101395. https://doi.org/10.1016/j.bcab.2019.101395
  106. Wang, Y., Moon, A., Huang, J., Sun, Y., & Qiu, H. J. (2022). Antiviral effects and underlying mechanisms of probiotics as promising antivirals. Frontiers in Cellular and Infection Microbiology, 12, 928050. https://doi.org/10.3389/fcimb.2022.928050. EDN: https://elibrary.ru/RBAYSS
  107. Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
  108. Wilson, R. A., Handley, B. A., & Beringer, J. E. (1998). Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biology and Biochemistry, 30(4), 413–417. https://doi.org/10.1016/S0038-0717(97)00129-1. EDN: https://elibrary.ru/AARQPL
  109. Woo, C., Jung, S., Fugaban, J. I. I., Bucheli, J. E. V., Holzapfel, W. H., & Todorov, S. D. (2021). Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. Journal of Applied Microbiology, 131(3), 1226–1239. https://doi.org/10.1111/jam.15035. EDN: https://elibrary.ru/GTNZXQ
  110. Woo, P. T. K., Bruno, D. W., & Lim, L. H. S. (Eds.). (2002). Diseases and disorders of finfish in cage culture (pp. x+354). CABI Publishing.
  111. Wu, J., Wang, J., Li, Z., Guo, S., Li, K., Xu, P., & Zou, J. (2022). Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Critical Reviews in Environmental Science and Technology, 53(7), 847–864. https://doi.org/10.1080/10643389.2022.2094693. EDN: https://elibrary.ru/VGGLWF
  112. Yanagida, F., Chen, Y. S., & Shinohara, T. (2006). Searching for bacteriocin-producing lactic acid bacteria in soil. Journal of General and Applied Microbiology, 52(1), 21–28. https://doi.org/10.2323/jgam.52.21
  113. Yang, H., Zhujin, D., Marana, M. H., Dalsgaard, I., Rzgar, J., Heidi, M., & Kurt, B. (2021). Immersion vaccines against Yersinia ruckeri infection in rainbow trout: Comparative effects of strain differences. Journal of Fish Diseases, 44(12), 1937–1950. https://doi.org/10.1111/jfd.13501. EDN: https://elibrary.ru/RBJKBR
  114. Yang, S. (2025). Purification and expression of a novel bacteriocin, JUQZ-1, against Pseudomonas syringae pv. actinidiae (PSA), secreted by Brevibacillus laterosporus Wq-1, isolated from the rhizosphere soil of healthy kiwifruit. Frontiers in Microbiology, 16, 1666370. https://doi.org/10.3389/fmicb.2025.1666370. EDN: https://elibrary.ru/ENQZEQ
  115. Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241. EDN: https://elibrary.ru/UTOHNV
  116. Yang, W., Li, J., Yao, Z., & Li, M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Science of the Total Environment, 928, 171757. https://doi.org/10.1016/j.scitotenv.2024.171757. EDN: https://elibrary.ru/KEWWBR
  117. Yimer Muktar, Y. M., Shimels Tesfaye, S. T., & Biruk Tesfaye, B. T. (2016). Present status and future prospects of fish vaccination: A review. Journal of Veterinary Science and Animal Husbandry, 4(3), 303.
  118. Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure-Consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656. EDN: https://elibrary.ru/IMKVVW
  119. Zhang, J., Liu, G., Shang, N., Cheng, W., Chen, S., & Li, P. (2009). Purification and partial amino acid sequence of Pentocin 31-1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31-1. Journal of Food Protection, 72(12), 2524–2529. https://doi.org/10.4315/0362-028X-72.12.2524. EDN: https://elibrary.ru/NBAVIV
  120. Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), 553. https://doi.org/10.3390/antibiotics9090553. EDN: https://elibrary.ru/HGUCGS

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).