Influence of stress factors on crustacean gene expression

Cover Page

Cite item

Full Text

Abstract

Background. This review systematizes current scientific data on the influence of abiotic (pH, temperature, hypoxia, ammonia, nitrite) and biotic (viral and bacterial infections) stress factors on gene expression in crustaceans of the order Decapoda. Molecular responses affecting key functional groups of genes associated with immunity, osmoregulation, antioxidant defense, chitin metabolism, and cellular homeostasis are analyzed. Stress-induced changes in gene expression are complex, tissue-specific, and time-dependent, representing key adaptive mechanisms. The results of this analysis have important practical implications for aquaculture, opening up prospects for identifying molecular markers of stress resistance and developing strategies for optimizing the maintenance conditions of commercially important species.

Purpose. This review aims to systematize and analyze current scientific data on the influence of abiotic (such as pH, temperature, hypoxia, ammonia, nitrites) and biotic (viral and bacterial infections) stress factors on expression of genes associated with immunity, osmoregulation, antioxidant defense, chitin metabolism and cellular homeostasis in crustaceans of the order Decapoda.

Materials and methods. The research was conducted in the scientific research laboratory “Center of Agrobiotechnology” of the Don State Technical University in 2024-2025.

Results. Complex changes in the expression of key genes regulating immunity, osmoregulation, antioxidant protection, chitin metabolism, and cellular homeostasis have been identified. It has been shown that these tissue-specific and time-dependent changes in expression are the central mechanism of the adaptive response to stress.

Conclusion. An analysis of current scientific data has allowed us to systematize information on the influence of abiotic and biotic stress factors on gene expression in crustaceans, particularly in members of the order Decapoda. It has been established that changes in key environmental parameters (such as temperature, pH, ammonia and nitrite concentrations) and exposure to pathogens (viruses, bacteria) trigger complex molecular responses affecting genes associated with immunity, osmoregulation, antioxidant defense, chitin metabolism, and cellular homeostasis.

About the authors

Daniil Yu. Kovalchuk

Don State Technical University

Author for correspondence.
Email: cool.d4niil@yandex.ru
ORCID iD: 0009-0008-8670-9307
SPIN-code: 2746-6218

student

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Diana S. Sarkisyan

Don State Technical University

Email: dengorden00@mail.ru
SPIN-code: 8500-8112

student

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Enkrina E. Cholutaeva

Don State Technical University

Email: cholutaevaa@mail.ru

student

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

Victoria N. Shevchenko

Don State Technical University

Email: vikakhorosheltseva@gmail.com
ORCID iD: 0000-0002-5001-4959
SPIN-code: 5860-1478

Candidate of Biological Sciences, Senior Researcher of the Research laboratory “Agrobiotechnology Center”

 

Russian Federation, 1, Gagarin Sq., Rostov-on-Don, 344000, Russian Federation

References

  1. Li, B. B., Fan, J. Q., Hong, Q. M., Yan, Z. Y., Yang, X. J., Lu, K. C., Chen, G. L., Li, M., Huang, W., & Chen, Y. H. (2022). Transcriptome analysis endoplasmic reticulum stress response in Litopenaeus vannamei hemocytes. Fish & Shellfish Immunology, 124, 421–429. https://doi.org/10.1016/j.fsi.2022.04.008. EDN: https://elibrary.ru/TNGTWC
  2. Ali, M. Y., Pavasovic, A., Mather, P. B., & Prentis, P. J. (2015). Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus. Gene, 564(2), 176–187.
  3. Li, Y., Pan, L., Tong, R., Li, Y., Li, Z., & Chen, Y. (2022). Effects of ammonia-N stress on molecular mechanisms associated with immune behavior changes in the haemocytes of Litopenaeus vannamei. Molecular Immunology, 149, 1–12. https://doi.org/10.1016/j.molimm.2022.05.122. EDN: https://elibrary.ru/VHMURX
  4. Cheng, H., Dai, Y., Ruan, X., Duan, X., Zhang, C., Li, L., Huang, F., Shan, J., Liang, K., Jia, X., Wang, Q., & Zhao, H. (2022). Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. Ecotoxicology and Environmental Safety, 245, 114114. https://doi.org/10.1016/j.ecoenv.2022.114114. EDN: https://elibrary.ru/YWNPNO
  5. Mengal, K., Kor, G., Kozák, P., & Niksirat, H. (2023). Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 276, 111332. ISSN 1095-6433.
  6. Nie, X., Huang, C., Wei, J., Wang, Y., Hong, K., Mu, X., Liu, C., Chu, Z., Zhu, X., & Yu, L. (2024). Effects of photoperiod on survival, growth, physiological, and biochemical indices of redclaw crayfish (Cherax quadricarinatus) juveniles. Animals (Basel), 14(3), 411. https://doi.org/10.3390/ani14030411. EDN: https://elibrary.ru/CBDJWI
  7. Zheng, J., Jia, Y., Li, F., Chi, M., Cheng, S., Liu, S., Jiang, W., & Liu, Y. (2023). Changes in the gene expression and gut microbiome to the infection of decapod iridescent virus 1 in Cherax quadricarinatus. Fish & Shellfish Immunology, 132, 108451. https://doi.org/10.1016/j.fsi.2022.108451. EDN: https://elibrary.ru/IXYLCY
  8. Chen, D., & Wang, H. (2022). Redclaw crayfish (Cherax quadricarinatus) responds to Vibrio parahaemolyticus infection by activating toll and immune deficiency signaling pathways and transcription of associated immune response genes. Fish & Shellfish Immunology, 127, 611–622. https://doi.org/10.1016/j.fsi.2022.06.069. EDN: https://elibrary.ru/CPYCBZ
  9. Jiang, Q., Zhang, W., Tan, H., Pan, D., Yang, Y., Ren, Q., & Yang, J. (2014). Analysis of gene expression changes, caused by exposure to nitrite, in metabolic and antioxidant enzymes in the red claw crayfish, Cherax quadricarinatus. Ecotoxicology and Environmental Safety, 104, 423–428.
  10. Liu, H. P., Chen, R. Y., Zhang, Q. X., Peng, H., & Wang, K. J. (2011). Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. Developmental & Comparative Immunology, 35(7), 716–724.
  11. Krishnan, K., Prabhudas, S. K., Jayaraman, K., Angel, J. R. J., Jangam, A. K., Katneni, V. K., & Shekhar, M. S. (2023). Transcriptomic variations associated with salinity stress in Penaeus indicus. Molecular Biology Reports, 50(11), 9295–9306. https://doi.org/10.1007/s11033-023-08824-4. EDN: https://elibrary.ru/CNOVQA
  12. Hernández Aguirre, L. E., Fuentes Sidas, Y. I., Rivera Rangel, L. R., Gutiérrez Méndez, N., Yepiz Plascencia, G., Chávez Flores, D., Zavala Díaz de la Serna, F. J., Peralta Pérez, M. D. R., & García Triana, A. (2022). cDNA characterization and expression of selenium dependent CqGPx3 isoforms in the crayfish Cherax quadricarinatus under high temperature and hypoxia. Genes (Basel), 13(2), 179. https://doi.org/10.3390/genes13020179. EDN: https://elibrary.ru/IQAFSQ
  13. Callaghan, N. I., & MacCormack, T. J. (2022). Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 193, 30–41.
  14. Boulangé Lecomte, C., Forget Leray, J., & Xuereb, B. (2014). Sexual dimorphism in Grp78 and Hsp90A heat shock protein expression in the estuarine copepod Eurytemora affinis. Cell Stress Chaperones, 19(4), 591–597. https://doi.org/10.1007/s12192-013-0482-3. EDN: https://elibrary.ru/RVIOPK
  15. Tarasova, I. V. (2010). The complement system. Allergology and Immunology in Pediatrics, 2(21), 45–48.
  16. Mishchenko, A. A. (2021). Transmembrane C-type lectin receptors in immunity. Bulletin of Syktyvkar University. Series 2: Natural Sciences. Medicine, 4(20). https://doi.org/10.34130/2306-6229-2021-4-8. EDN: https://elibrary.ru/HZICQK
  17. Rudoy, D. V., Olshevskaya, A. V., Shevchenko, V. N., Golovko, L. S., & Oganisyan, M. M. (2025). Materials for the technology of pond cultivation of Australian red claw crayfish Cherax quadricarinatus (von Martens, 1868). Agrarian Bulletin of the North Caucasus, 15(1), 48–59. https://doi.org/10.31279/2949-4796-2025-15-1-48-59. EDN: https://elibrary.ru/CBVDZL
  18. Zhang, X., Yuan, J., Li, F., & Xiang, J. (2021). Chitin synthesis and degradation in crustaceans: A genomic view and application. Marine Drugs, 19(3), 153. PMID: 33804177; PMCID: PMC8002005. https://doi.org/10.3390/md19030153. EDN: https://elibrary.ru/SKKSZA
  19. Guo, H., et al. (2013). Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 157(4), 366–371.
  20. Yang, Y., Xu, W., Jiang, Q., Ye, Y., Tian, J., Huang, Y., Du, X., Li, Y., Zhao, Y., & Liu, Z. (2022). Effects of low temperature on antioxidant and heat shock protein expression profiles and transcriptomic responses in crayfish (Cherax destructor). Antioxidants, 11, 1779. https://doi.org/10.3390/antiox11091779. EDN: https://elibrary.ru/MFDMIW

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).