The effect of molecular hydrogen and protein kinase C inhibitor on the functional parameters of bovine sperm

Cover Page

Cite item

Full Text

Abstract

Background.  Studies on the use of molecular hydrogen as a cryoprotector for cattle spermatozoa have shown positive results, an increase in cell mobility and viability, and stabilization of their membranes have been noted. Despite this, the mechanisms of action of molecular hydrogen on spermatozoa remain unclear. 

Purpose. Investigation of the mechanisms of action of molecular hydrogen and the inhibitor of protein kinase C – staurosporin on the functional activity of bovine sperm. 

Materials and methods. The object of the study was semen samples from Holstinized bulls, subjected to various treatments. Sperm diluted with a standard diluent "BioXcell" was used; sperm diluted with a diluent "BioXcell" enriched with molecular hydrogen; sperm incubated using staurosporin – a protein kinase C inhibitor; sperm treated with molecular hydrogen and subsequent incubation with staurosporin. For each sample in the sperm, an analysis of kinetic parameters, energy status and intensity of free radical processes was carried out. 

Results. The inhibitor of proteinkinase C – staurosporin reduced the metabolic and kinetic parameters of spermatozoa, which confirms the direct participation of proteinkinase C in maintaining the structural and functional integrity and activity of spermatozoa. Molecular hydrogen in the presence of staurosporin had a positive effect on the studied parameters of bovine sperm, therefore, in addition to proteinkinase C, other mechanisms that are insensitive to staurosporin are involved in the transduction of molecular hydrogen-induced signals. 

Conclusion. Identification of the mechanisms determining the stimulating effects of molecular hydrogen on bull sperm will improve the parameters of fresh sperm and the technology of cryopreservation of bull sperm.

About the authors

Marina N. Ivashchenko

Nizhny Novgorod State Agrotechnological University named after L.Y. Florentyev

Author for correspondence.
Email: kafedra2577@mail.ru
ORCID iD: 0000-0001-6642-8518
SPIN-code: 8510-8676

Cand. Sc. (Biology), Associate Professor

 

Russian Federation, 97, Gagarin Ave., Nizhny Novgorod, 603107, Russian Federation

Anna V. Deryugina

National Research Lobachevsky State University of Nizhny Novgorod

Email: deryugina@ibbm.unn.ru
ORCID iD: 0000-0001-8812-8559
SPIN-code: 7974-4600

Dr. Sc. (Biology), Associate Professor

 

Russian Federation, 23, Gagarin Ave., Nizhny Novgorod, 603022, Russian Federation

Andrey A. Belov

Nizhny Novgorod State Agrotechnological University named after L.Y. Florentyev

Email: andrey.raven@gmail.com
ORCID iD: 0000-0002-4869-5054
SPIN-code: 1394-7694

Cand. Sc. (Biology), Associate Professor

 

Russian Federation, 97, Gagarin Ave., Nizhny Novgorod, 603107, Russian Federation

Pavel S. Ignatiev

Production Association "Ural Optical and Mechanical Plant" named after E.S. Yalamov

Email: ignasha2000@yandex.ru
ORCID iD: 0000-0001-5075-7034
SPIN-code: 7956-1778

Cand. Sc. (Phys.-Math.)

 

Russian Federation, 33B, Vostochnaya Str., Yekaterinburg, 620100, Russian Federation

Mikhail I. Latushko

Production Association "Ural Optical and Mechanical Plant" named after E.S. Yalamov

Email: ancord.m@yandex.ru

Cand. Sc. (Engineering)

 

Russian Federation, 33B, Vostochnaya Str., Yekaterinburg, 620100, Russian Federation

References

  1. Antonov, M. P., Zhigulina, V. V. (2012). Influence of biochemical changes in sperm and spermoplasm lipids on ejaculate fertility. Upper Volga Medical Journal, (3), 47-50. EDN: https://elibrary.ru/pcqnmb
  2. Vinogradova, I. L., Bagryantseva, S. Y., Derviz, G. V. (1980). Method for simultaneous determination of 2,3 DPG and ATP in erythrocytes. Laboratory Affairs, (7), 424-426.
  3. Vladimirov, Y. A., Archakov, A. I. (1972). Lipid peroxidation in biological membranes. Moscow: Nauka, 252 p. EDN: https://elibrary.ru/pjbhrz
  4. Deryugina, A. V., Ivashchenko, M. N., Lodoynoy, M. S. (2022). Assessment of bull sperm membrane resistance during long-term storage. Natural and Technical Sciences, 1(164), 107-109. EDN: https://elibrary.ru/qldsao
  5. Ivashchenko, M. N., Deryugina, A. V., Ermokhina, O. N., Ignatiev, P. S., Latushko, M. I., Metelin, V. B., Belov, A. A., Erzutov, A. I. (2024). Changes in metabolism of native and thawed bull sperm under the influence of molecular hydrogen. Siberian Journal of Life Sciences and Agriculture, 16(3), 133-148. https://doi.org/10.12731/2658-6649-2024-16-3-1152 EDN: https://elibrary.ru/locqfz
  6. Korochkina, E. A., Moroz, A. I. (2022). The significance of semen diluents for different farm animal species during cryopreservation. Genetics and Animal Breeding, (4), 108-113. https://doi.org/10.31043/2410-2733-2022-4-108-113 EDN: https://elibrary.ru/mzpqxd
  7. Maksimova, M. A., Korochkina, E. A. (2023). Cryoresistance of semen in different animal species (review). Genetics and Animal Breeding, (4), 127-134. https://doi.org/10.31043/2410-2733-2023-4-127-134 EDN: https://elibrary.ru/ajouet
  8. Abilov, A. I., Reshetnikova, N. M. (eds.). (2008). National technology for freezing and using semen of breeding bulls. Moscow, 160 p.
  9. Semenova, V. S., Shushakova, A. D., Ivanovskaya, M. M., Korochkina, E. A. (2023). Influence of mesenchymal stem cells and their derivatives on semen quality indicators in animals before and after cryopreservation (review). Genetics and Animal Breeding, (1), 89-95. https://doi.org/10.31043/2410-2733-2023-1-89-95 EDN: https://elibrary.ru/djolux
  10. Breitbart, H., Naor, H., Breitbart, Z. (1999). Protein kinases in mammalian sperm capacitation and the acrosome reaction. Rev Reprod, 4(3), 151-159. https://doi.org/10.1530/ror.0.0040151
  11. Das, A., Roychoudhury, S. (2022). Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles. Adv Exp Med Biol, 1358, 9-40. https://doi.org/10.1007/978-3-030-89340-8_2 EDN: https://elibrary.ru/keuqam
  12. Ickowicz, D., Finkelstein, M., Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl, 14(6), 816-821. https://doi.org/10.1038/aja.2012.81
  13. O’Connell, M., McClure, N., Lewis, S.E.M. (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod, 17, 704-709. https://doi.org/10.1093/humrep/17.3.704
  14. Ohno, K., Ito, M., Ichihara, M., Ito, M. (2012). Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev, 24, 353152. https://doi.org/10.1155/2012/353152
  15. Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 13(6), 688-694. https://doi.org/10.1038/nm1577
  16. Paoli, D., Lombardo, F., Lenzi, A. (2014). Sperm cryopreservation: effects on chromatin structure. Adv Exp Med Biol, 791, 137-150. https://doi.org/10.1007/978-1-4614-7783-9_9
  17. Pahune, P.P., Choudhari, A.R., Muley, P.A. (2013). The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J Clin Diagn Res, 7(6), 991-995. https://doi.org/10.7860/JCDR/2013/4974.3040
  18. Paudel, B., Gervasi, M.G., Porambo, J., Caraballo, D. (2018). Sperm capacitation is associated with phosphorylation of the testis-specific radial spoke protein Rspha. Biol Reprod, 100(2), 440-454. https://doi.org/10.1093/biolre/ioy202
  19. Qiu, P., Liu, Y., Zhang, J. (2019). Recent advances in studies of molecular hydrogen against sepsis. Int J Biol Sci, 15(6), 1261. https://doi.org/10.7150/ijbs.30741
  20. Roten, R., Paz, G. F., Homonnai, Z. T. (1992). Ca2±independent induction of acrosome reaction by protein kinase C in human sperm. Endocrinology, 131(5), 2235-2243. https://doi.org/10.1210/endo.131.5.1425422
  21. Ward, N. E., O’Brian, C. A. (1992). Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates. Mol Pharmacol, 41(2), 387-392. https://doi.org/10.1016/S0026-895X(25)08889-3

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).