The results of the study of the effects of glyphosate and antibiotics on the composition and functions of the intestinal microbiome of broilers

Cover Page

Cite item

Full Text

Abstract

Background. The combined effect of residual amounts of pesticides and antibiotics in poultry feed can lead to a negative effect on the composition of the intestinal microbiome of livestock.

Purpose. To analyze changes in the composition of broilers intestinal cecum microbiome under the influence of glyphosate in an amount of 1 MPC for food products in isolation and with a combination of glyphosate with antibiotics and an anticoccidial drug.

Materials and methods. The experimental birds were divided into 4 groups: Group I - control, which received the basic diet (BD), experimental group II - BD with the addition of glyphosate; III experimental - BD with the addition of glyphosate and veterinary antibiotics; IV experimental - BD with the addition of glyphosate and anticoccidial drug. The composition of bacteria was determined by NGS sequencing on a MiSeq automatic sequencer (Illumina, Inc., USA). PICRUSt2 (v.2.3.0) software (https://github.com/picrust/picrust2) was used to perform functional activity prediction of the metagenome, gene families, and proteins.

 Results. The results showed that under the influence of glyphosate (experimental group II), on the 7th and 40th days of life of broilers, microorganisms of the phylum Proteobacteria were completely eliminated from the community of microorganisms in the chyme of the intestinal cecum; on the 14th day, their content decreased by 3 .7 times compared to control group I (P≤0.05). In groups III and IV, their number increased compared to group II to 3.1 and 7.9 times, respectively (P≤0.05). At 7 days of age in experimental group II, as well as at 7-40 days of age in experimental group III, the number of Ruminococcaceae and Oscillospiraceae bacteria decreased to 10.3 and 11.8%, respectively, compared to control group I (P≤0. 05). Changes in the composition of microbial taxa under the influence of pesticides and medicinal substances introduced into feed led to changes in 185 potential functional pathways (P≤0.05). Thus, the activity of the pathways of energy, carbohydrate, protein metabolism, fat metabolism, biosynthesis of coenzymes and cofactors, vitamins decreased in experimental groups II-IV compared to control group I (P≤0.05).

Conclusion. Our data indicate that during the experimental contamination of feed with the herbicide glyphosate, the introduction of veterinary antibiotics and anticoccidial drug into the feed in the caeca of the intestines of broiler chickens, changes in the structure of the microbiome occurred already at high taxonomic levels, and critical inhibition was also observed important potentially underlying functional pathways. This can negatively affect the host's body.

About the authors

Daria G. Tyurina

BIOTROF Limited Liability Company

Author for correspondence.
Email: tiurina@biotrof.ru
ORCID iD: 0000-0001-9001-2432
SPIN-code: 9917-5118
Scopus Author ID: 57219196023

Candidate of Economic Sciences, Deputy Director for Finance, Chief Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Elena A. Yildirim

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: deniz@biotrof.ru
ORCID iD: 0000-0002-5846-5105
SPIN-code: 4479-7509
Scopus Author ID: 57059948100
ResearcherId: C-3770-2014

Doctor of Biological Sciences, Professor of the Department of Large Livestock, Chief Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Georgy Y. Laptev

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: georg-laptev@rambler.ru
ORCID iD: 0000-0002-8795-6659
SPIN-code: 3600-5295
Scopus Author ID: 54414368800
ResearcherId: A-9395-2019

Doctor of Biological Sciences, Professor of the Department of Large Livestock, director

 

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Natalia I. Novikova

BIOTROF Limited Liability Company 

Email: novikova@biotrof.ru

Candidate of Biological Sciences, First Deputy Director

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation 

Larisa A. Ilyina

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: ilina@biotrof.ru
ORCID iD: 0000-0003-2789-4844
SPIN-code: 5826-7525
Scopus Author ID: 57060452100
ResearcherId: C-3772-2014

Doctor of Biological Sciences, Professor of the Department of Large Livestock, Chief of the Molecular Genetics Laboratory

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Valentina A. Filippova

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: filippova@biotrof.ru
ORCID iD: 0000-0001-8789-9837
SPIN-code: 4398-5340
Scopus Author ID: 57060101800
ResearcherId: AAE-2402-2022

Senior Lecturer at the Department of Large Livestock, Senior Biotechnologist at the Molecular Genetics Laboratory

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Andrey V. Dubrovin

BIOTROF Limited Liability Company 

Email: dubrovin@biotrof.ru

Candidate of Veterinary Sciences, Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation 

Kseniya A. Kalitkina

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: kalitkina.xeniya@gmail.com
ORCID iD: 0000-0002-9541-6839
SPIN-code: 7893-2670
Scopus Author ID: 57280455100
ResearcherId: ADD-4706-2022

Assistant of the Department of Large Livestock, Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Ekaterina S. Ponomareva

BIOTROF Limited Liability Company

Email: kate@biotrof.ru
ORCID iD: 0000-0002-4336-8273
SPIN-code: 4260-6755
Scopus Author ID: 57262828600
ResearcherId: AGB-6728-2022

Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Irina A. Klyuchnikova

St. Petersburg State Agrarian University; BIOTROF Limited Liability Company

Email: klyuchnikova.irinaa@yandex.ru
ORCID iD: 0009-0008-6484-1235
SPIN-code: 8822-5738

master's student, Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Vasiliy A. Zaikin

BIOTROF Limited Liability Company

Email: dfcx@biotrof.ru
ORCID iD: 0009-0006-8029-9955

Biotechnologist of the Molecular Genetic Laboratory

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

Elena P. Gorfunkel

BIOTROF Limited Liability Company

Email: elena@biotrof.ru
ORCID iD: 0000-0002-6843-8733
SPIN-code: 2958-6204

Quality controller

 

Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation

References

  1. Egorov, I. A., Manukyan, V. A., & Lankova, T. N. (2013). Methodology for conducting scientific and production research on feeding poultry. Molecular genetic methods for determining intestinal microflora. Sergiev Posad: Vsyo Sergiev Posad. 51 p. ISBN: 978-5-91582-047-9 EDN: https://elibrary.ru/SDOKYP
  2. Yildyrym, E. A., Grozina, A. A., Vertiprakhov, V. G., Ilyina, L. A., Filippova, V. A., Laptev, G. Yu., Ponomareva, E. S., Dubrovin, A. V., Kalitkina, K. A., Molotkov, V. V., Akhmatchin, D. A., Brazhnik, E. A., Novikova, N. I., & Tyurina, D. G. (2022). Composition and metabolic potential of the gut microbiome of broilers Gallus Gallus L. under the influence of feed additives in experimental T-2 toxinosis. Agricultural Biology, 57(4), 743-761. https://doi.org/10.15389/agrobiology.2022.4.743rus EDN: https://elibrary.ru/DRKMVH
  3. Laptev, G. Yu., Yildyrym, E. A., Tyurina, D. G., Ilyina, L. A., Filippova, V. A., Kalitkina, K. A., Dubrovin, A. V., Novikova, N. I., Melikidi, V. Kh., Gorfunkel, E. P., Ponomareva, E. S., & Okolelova, T. M. (2022). Is glyphosate really harmless? Compound Feed, 7-8, 69-70. EDN: https://elibrary.ru/XJFXLL
  4. Binek, M., Cisek, A. A., Rzewuska, M., Chrobak-Chmiel, D., Stefanska, I., Kizerwetter-Swida, M. (2017). Chicken intestinal microbiome: Development and function. Med. Weter, 73, 618-625. https://doi.org/10.21521/mw.5790
  5. Bortoluzzi, C., Scapini, L. B., Ribeiro, M. V., Pivetta, M. R., Buzim, R., Fernandes, J. I. M. (2019). Effects of β-mannanase supplementation on the intestinal microbiota composition of broiler chickens challenged with a coccidiosis vaccine. Livestock Science, 228, 187-194.
  6. Bortoluzzi, C., Tamburini, I., Geremia, J. (2023). Microbiome modulation, microbiome protein metabolism index, and growth performance of broilers supplemented with a precision biotic. Poult Sci, 102(5), 102595. https://doi.org/10.1016/j.psj.2023.102595 EDN: https://elibrary.ru/TFMWKJ
  7. Chen, H. L., Zhao, X. Y., Zhao, G. X., Huang, H. B., Li, H. R., Shi, C. W., Yang, W. T., Jiang, Y. L., Wang, J. Z., Ye, L. P., Zhao, Q., Wang, C. F., Yang, G. L. (2020). Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasites and Vectors, 13, 1-15. https://doi.org/10.1186/s13071-020-3897-6 EDN: https://elibrary.ru/KLVQIE
  8. Cheng, X., Zheng, H., Wang, C., Wang, X., Fei, C., Zhou, W., & Zhang, K. (2022). Effects of salinomycin and ethanamizuril on the three microbial communities in vivo and in vitro. Front Microbiol, 13, 941259. https://doi.org/10.3389/fmi-cb.2022.941259 EDN: https://elibrary.ru/LYZGAW
  9. Chernevskaya, E., Beloborodova, N., Klimenko, N., Pautova, A., Shilkin, D., Gusarov, V., & Tyakht, A. (2020). Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: a prospective observational pilot study. Crit. Care, 24, 312. https://doi.org/10.1186/s-13054-020-03031-0 EDN: https://elibrary.ru/OVJQNC
  10. Chuang, W. Y., Lin, L. J., Shih, H. Der, Shy, Y. M., Chang, S. C., & Lee, T. T. (2021). Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products. Animals, 11, 2550. https://doi.org/10.3390/ani11092550 EDN: https://elibrary.ru/JLMNFW
  11. Collins, S. L., & Patterson, A. D. (2020). The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B, 10(1), 19-32. https://doi.org/10.1016/j.apsb.2019.12.001 EDN: https://elibrary.ru/NRUGNV
  12. Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2017). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep, 5, 156-163. https://doi.org/10.1016/j.toxrep.2017.12.025 EDN: https://elibrary.ru/VFCTZO
  13. El, A. G., Mohsen, H., & Mohamed, S. S. (2012). Effect of Feeding a Combination of Zinc, Manganese and Copper Methionine Chelates of Early Lactation High Producing Dairy Cow. Food and Nutrition Sciences, 1084-1091. https://doi.org/10.4236/FNS.2012.38144
  14. Fathi, M. A., Abdelghani, E., Shen, D., Ren, X., Dai, P., Li, Z., Tang, Q., Li, Y., & Li, C. (2019). Effect of in ovo glyphosate injection on embryonic development, serum biochemistry, antioxidant status and histopathological changes in newly hatched chicks. J. Anim. Physiol. Anim. Nutr, 103, 1776-1784. https://doi.org/10.1111/jpn.13181
  15. Fathi, M. A., Han, G., Kang, R., Shen, D., Shen, J., & Li, C. (2020). Disruption of cytochrome P450 enzymes in the liver and small intestine in chicken embryos in ovo exposed to glyphosate. Environ. Sci, 27, 16865-16875. https://doi.org/10.1007/s11356-020-08269-3 EDN: https://elibrary.ru/CBTYZL
  16. Frick, P. G., Riedler, G., & Brögli, H. (1967). Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol, 23, 387-389. https://doi.org/10.1152/jappl.1967.23.3.387
  17. Grau, D., Grau, N., Gascuel, Q., Paroissin, C., Stratonovitch, C., Lairon, D., Devault, D. A., & Di Cristofaro, J. (2022). Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ. Sci. Pollut. Res. Int, 29, 32882-32893. https://doi.org/10.1007/s11356-021-18110-0 EDN: https://elibrary.ru/DJWFDU
  18. Gustafsson, B. E., Daft, F. S., McDaniel, E. G., Smith, J. C., & Fitzgerald, R. J. (1962). Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats. The Journal of Nutrition, 78, 461-468. https://doi.org/10.1093/jn/78.4.461
  19. Hill, J. H., & Round, J. L. (2021). SnapShot: Microbiota effects on host physiology. Cell, 184, 2796-2796. https://doi.org/10.1016/j.cell.2021.04.026 EDN: https://elibrary.ru/DMSPLA
  20. Hill, M. J. (1997). Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention, 6, S43-S45. https://doi.org/10.1097/00008469-199703001-00009
  21. Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab, 16(5), 559-564. https://doi.org/10.1016/j.cmet.2012.10.007
  22. Huang, S., Zhang, C., Xu, T., Shaukat, A., He, Y., Chen, P., Lin, L., Yue, K., Cao, Q., & Tong, X. (2022). Integrated Fecal Microbiome and Metabolomics Reveals a Novel Potential Biomarker for Predicting Tibial Dyschondroplasia in Chickens. Front Physiol, 13, 887207. https://doi.org/10.3389/fphys.2022.887207 EDN: https://elibrary.ru/HYQFGK
  23. Kimura, N., Mimura, F., Nishida, S., & Kobayashi, A. (1976). Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poult. Sci, 55, 1375-1383. https://doi.org/10.3382/ps.0551375
  24. Lakshminarayanan, B., Harris, H. M. B., Coakley, M., O’Sullivan, Ó., Stanton, C., Pruteanu, M., Shanahan, F., O’Toole, P. W., Ross, R. P., & On Behalf Of The Eldermet Consortium. (2013). Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. Journal of medical microbiology, 62(3), 457-466. https://doi.org/10.1099/jmm.0.052258-0
  25. Lee, S., La, T. M., Lee, H. J., Choi, I. S., Song, C. S., Park, S. Y., Lee, J. B., & Lee, S. W. (2019). Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep, 9, 6838. https://doi.org/10.1038/s41598-019-43280-w EDN: https://elibrary.ru/KVQXQB
  26. Lima, J. (2023). Estimating Microbial Protein Synthesis in the Rumen—Can ‘Omics’ Methods Provide New Insights into a Long-Standing Question? Vet. Sci, 10.
  27. Lu, C., Yan, Y., Jian, F., & Ning, C. (2021). Coccidia-microbiota interactions and their effects on the host. Front. Cell Infect. Microbiol, 11, 751481. https://doi.org/10.3389/fcimb.2021.751481 EDN: https://elibrary.ru/IPCEDA
  28. Maruvada, P., Leone, V., Kaplan, L. M., & Chang, E. B. (2017). The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe, 22, 589-599. https://doi.org/10.1016/j.chom.2017.10.005 EDN: https://elibrary.ru/YKKOZQ
  29. McCormack, U. M., Curiao, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol, 83, e00380-17. https://doi.org/10.1128/AEM.00380-17
  30. McDonald, J. E., Marchesi, J. R., & Koskella, B. (2020). Application of ecological and evolutionary theory to microbiome community dynamics across systems. Proc. Biol. Sci, 287, 20202886. https://doi.org/10.1098/rspb.2020.2886 EDN: https://elibrary.ru/ECDLLF
  31. Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Wells, J. M., & Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol, 16, 255-261. https://doi.org/10.1016/j.mib.2013.06.003
  32. Moon, C. D., Young, W., Maclean, P. H., Cookson, A. L., & Bermingham, E. N. (2018). Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen, 7(5), e00677. https://doi.org/10.1002/mbo3.677 EDN: https://elibrary.ru/CTMKJI
  33. Orrell, K. E., & Melnyk, R. A. (2021). Large Clostridial Toxins: Mechanisms and Roles in Disease. Microbiol Mol Biol Rev, 85(3), e0006421. https://doi.org/10.1128/MMBR.00064-21 EDN: https://elibrary.ru/IMHVYN
  34. Pereira, R., Bortoluzzi, C., Durrer, A., Fagundes, N. S., Pedroso, A. A., Rafael, J. M., de Lima Perim, J. E., Zavarize, K. C., Napty, G. S., & Andreote, F. D. (2019). Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. J. Anim. Physiol. Anim. Nutr, 103, 72-86. https://doi.org/10.1111/jpn.13004
  35. Pires, P. G. D. S., Torres, P., Teixeira Soratto, T. A., Filho, V. B., Hauptli, L., Wagner, G., Haese, D., Pozzatti, C. D., & Moraes, P. O. (2022). Comparison of functional-oil blend and anticoccidial antibiotics effects on performance and microbiota of broiler chickens challenged by coccidiosis. PLoS One, 17(7), e0270350. https://doi.org/10.1371/journal.pone.0270350 EDN: https://elibrary.ru/LDTMUN
  36. Rajilic-Stojanovic, M., & De Vos, W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev, 38(5), 996-1047. https://doi.org/10.1111/1574-6976.12075
  37. Robinson, K., Becker, S., Xiao, Y., Lyu, W., Yang, Q., Zhu, H., Yang, H., Zhao, J., & Zhang, G. (2019). Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers. Microorganisms, 7(9), 282. https://doi.org/10.3390/microorganisms7090282
  38. Saxena, S., Saxena, V. K., Tomar, S., Sapcota, D., & Gonmei, G. (2016). Characterisation of caecum and crop microbiota of Indian indigenous chicken targeting multiple hypervariable regions within 16S rRNA gene. Brit. Poult. Sci, 57, 381-389. https://doi.org/10.1080/00071668.2016.1161728
  39. Schokker, D., de Klerk, B., Borg, R., Bossers, A., & Rebel, J. M. J. (2021). Factors Influencing the Succession of the Fecal Microbiome in Broilers. Livest. Sci, 247, 104486. https://doi.org/10.1016/j.livsci.2021.104486 EDN: https://elibrary.ru/PDMHXO
  40. Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N. S., & Kabsch, W. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci, 98, 1376-1380. https://doi.org/10.1073/pnas.98.4.1376 EDN: https://elibrary.ru/LSWCXN
  41. Schwartz, D. J., Langdon, A. E., & Dantas, G. (2020). Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med, 12, 82. https://doi.org/10.1186/s13073-020-00782-x EDN: https://elibrary.ru/AJGCKF
  42. Shin, B., Park, C., & Park, W. (2020). Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl. Microbiol. Biotechnol, 104, 1423-1435. https://doi.org/10.1007/s00253-019-10317-z EDN: https://elibrary.ru/QTZXAD
  43. Simpson, K. M., Callan, R. J., & Van Metre, D. C. (2018). Clostridial Abomasitis and Enteritis in Ruminants. Vet Clin North Am Food Anim Pract, 34(1), 155-184. https://doi.org/10.1016/j.cvfa.2017.10.010
  44. Szabó, R., Szemerédy, G., Kormos, É., Lehel, J., & Budai, P. (2018). Studies on joint toxic effects of a glyphosate herbicide (FOZÁT 480) and a heavy metal (cadmium) on chicken embryos. AGR, 2, 37-43.
  45. Waite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol, 5, 223. https://doi.org/10.3389/fmicb.2014.00223
  46. Willson, N. L., Nattrass, G. S., Hughes, R. J., Moore, R. J., Stanley, D., Hynd, P. I., & Forder, R. E. A. (2018). Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Appl. Microbiol. Biotechnol, 102, 9317-9329. https://doi.org/10.1007/s00253-018-9281-1 EDN: https://elibrary.ru/VJIVQO
  47. Xi, Y., Shuling, N., Kunyuan, T., Qiuyang, Z., Hewen, D., ChenCheng, G., Tianhe, Y., Liancheng, L., & Xin, F. (2019). Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog, 132, 325-334. https://doi.org/10.1016/j.micpath.2019.05.014 EDN: https://elibrary.ru/FZDTAH
  48. Xu, S. Y., Aweya, J. J., Li, N., Deng, R. Y., Chen, W. Y., Tang, J., & Cheong, K. L. (2019). Microbial catabolism of porphyra haitanensis polysaccharides by human gut microbiota. Food Chem, 289, 177-186. https://doi.org/10.1016/j.food-chem.2019.03.050
  49. Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., & Huang, H. (2021). Oscillospira - a candidate for the next-generation probiotics. Gut Microbes, 13(1), 1987783. https://doi.org/10.1080/19490976.2021.1987783 EDN: https://elibrary.ru/IDUYRW
  50. Yildirim, E. A., Laptev, G. Y., Tiurina, D. G., Gorfunkel, E. P., Ilina, L. A., Filippova, V. A., Dubrovin, A. V., Brazhnik, E. A., Novikova, N. I., Melikidi, V. K., Kalitkina, K. A., Ponomareva, E. S., Griffin, D. K., & Romanov, M. N. (2024). Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet Res Commun, 48(1), 153-164. https://doi.org/10.1007/s11259-023-10195-x EDN: https://elibrary.ru/PUTFZG
  51. Zhang, J., Jin, W., Jiang, Y., Xie, F., & Mao, S. (2022). Response of milk performance, rumen and hindgut microbiome to dietary supplementation with Aspergillus oryzae fermentation extracts in dairy cows. Curr. Microbiol, 79, 113.
  52. Zhang, K., Wang, C., Li, Y., He, J., Wang, M., & Wang, X. (2020). Rat two-generation reproductive toxicity and teratogenicity studies of a novel coccidiostat - Ethanamizuril. Regul. Toxicol. Pharmacol, 113, 104623. https://doi.org/10.1016/j.yrtph.2020.104623 EDN: https://elibrary.ru/BUZXEZ
  53. Zhang, Z., Tang, H., Chen, P., Xie, H., & Tao, Y. (2019). Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct. Target. Ther, 4, 41. https://doi.org/10.1038/s41392-019-0074-5 EDN: https://elibrary.ru/FJSSIY
  54. Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res, 30, 492-506. https://doi.org/10.1038/s41422-020-0332-7 EDN: https://elibrary.ru/POIHUF
  55. Zhou, S., Wang, F., Wong, E. T., Fonkem, E., Hsieh, T. C., Wu, J. M., & Wu, E. (2013). Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Current medicinal chemistry, 20(33), 4095-4101. https://doi.org/10.2174/15672050113109990199

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».