The results of the study of the effects of glyphosate and antibiotics on the composition and functions of the intestinal microbiome of broilers
- Authors: Tyurina D.G.1, Yildirim E.A.2,1, Laptev G.Y.2,1, Novikova N.I.3, Ilyina L.A.2,1, Filippova V.A.2,1, Dubrovin A.V.3, Kalitkina K.A.2,1, Ponomareva E.S.1, Klyuchnikova I.A.2,1, Zaikin V.A.1, Gorfunkel E.P.1
-
Affiliations:
- BIOTROF Limited Liability Company
- St. Petersburg State Agrarian University
- BIOTROF Limited Liability Company
- Issue: Vol 17, No 2 (2025)
- Pages: 261-294
- Section: Biochemistry, Genetics and Molecular Biology
- Published: 30.04.2025
- URL: https://journals.rcsi.science/2658-6649/article/view/310580
- DOI: https://doi.org/10.12731/2658-6649-2025-17-2-1107
- EDN: https://elibrary.ru/ODFQOK
- ID: 310580
Cite item
Full Text
Abstract
Background. The combined effect of residual amounts of pesticides and antibiotics in poultry feed can lead to a negative effect on the composition of the intestinal microbiome of livestock.
Purpose. To analyze changes in the composition of broilers intestinal cecum microbiome under the influence of glyphosate in an amount of 1 MPC for food products in isolation and with a combination of glyphosate with antibiotics and an anticoccidial drug.
Materials and methods. The experimental birds were divided into 4 groups: Group I - control, which received the basic diet (BD), experimental group II - BD with the addition of glyphosate; III experimental - BD with the addition of glyphosate and veterinary antibiotics; IV experimental - BD with the addition of glyphosate and anticoccidial drug. The composition of bacteria was determined by NGS sequencing on a MiSeq automatic sequencer (Illumina, Inc., USA). PICRUSt2 (v.2.3.0) software (https://github.com/picrust/picrust2) was used to perform functional activity prediction of the metagenome, gene families, and proteins.
Results. The results showed that under the influence of glyphosate (experimental group II), on the 7th and 40th days of life of broilers, microorganisms of the phylum Proteobacteria were completely eliminated from the community of microorganisms in the chyme of the intestinal cecum; on the 14th day, their content decreased by 3 .7 times compared to control group I (P≤0.05). In groups III and IV, their number increased compared to group II to 3.1 and 7.9 times, respectively (P≤0.05). At 7 days of age in experimental group II, as well as at 7-40 days of age in experimental group III, the number of Ruminococcaceae and Oscillospiraceae bacteria decreased to 10.3 and 11.8%, respectively, compared to control group I (P≤0. 05). Changes in the composition of microbial taxa under the influence of pesticides and medicinal substances introduced into feed led to changes in 185 potential functional pathways (P≤0.05). Thus, the activity of the pathways of energy, carbohydrate, protein metabolism, fat metabolism, biosynthesis of coenzymes and cofactors, vitamins decreased in experimental groups II-IV compared to control group I (P≤0.05).
Conclusion. Our data indicate that during the experimental contamination of feed with the herbicide glyphosate, the introduction of veterinary antibiotics and anticoccidial drug into the feed in the caeca of the intestines of broiler chickens, changes in the structure of the microbiome occurred already at high taxonomic levels, and critical inhibition was also observed important potentially underlying functional pathways. This can negatively affect the host's body.
Keywords
About the authors
Daria G. Tyurina
BIOTROF Limited Liability Company
Author for correspondence.
Email: tiurina@biotrof.ru
ORCID iD: 0000-0001-9001-2432
SPIN-code: 9917-5118
Scopus Author ID: 57219196023
Candidate of Economic Sciences, Deputy Director for Finance, Chief Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Elena A. Yildirim
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: deniz@biotrof.ru
ORCID iD: 0000-0002-5846-5105
SPIN-code: 4479-7509
Scopus Author ID: 57059948100
ResearcherId: C-3770-2014
Doctor of Biological Sciences, Professor of the Department of Large Livestock, Chief Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Georgy Y. Laptev
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: georg-laptev@rambler.ru
ORCID iD: 0000-0002-8795-6659
SPIN-code: 3600-5295
Scopus Author ID: 54414368800
ResearcherId: A-9395-2019
Doctor of Biological Sciences, Professor of the Department of Large Livestock, director
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Natalia I. Novikova
BIOTROF Limited Liability Company
Email: novikova@biotrof.ru
Candidate of Biological Sciences, First Deputy Director
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Larisa A. Ilyina
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: ilina@biotrof.ru
ORCID iD: 0000-0003-2789-4844
SPIN-code: 5826-7525
Scopus Author ID: 57060452100
ResearcherId: C-3772-2014
Doctor of Biological Sciences, Professor of the Department of Large Livestock, Chief of the Molecular Genetics Laboratory
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Valentina A. Filippova
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: filippova@biotrof.ru
ORCID iD: 0000-0001-8789-9837
SPIN-code: 4398-5340
Scopus Author ID: 57060101800
ResearcherId: AAE-2402-2022
Senior Lecturer at the Department of Large Livestock, Senior Biotechnologist at the Molecular Genetics Laboratory
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Andrey V. Dubrovin
BIOTROF Limited Liability Company
Email: dubrovin@biotrof.ru
Candidate of Veterinary Sciences, Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Kseniya A. Kalitkina
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: kalitkina.xeniya@gmail.com
ORCID iD: 0000-0002-9541-6839
SPIN-code: 7893-2670
Scopus Author ID: 57280455100
ResearcherId: ADD-4706-2022
Assistant of the Department of Large Livestock, Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Ekaterina S. Ponomareva
BIOTROF Limited Liability Company
Email: kate@biotrof.ru
ORCID iD: 0000-0002-4336-8273
SPIN-code: 4260-6755
Scopus Author ID: 57262828600
ResearcherId: AGB-6728-2022
Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Irina A. Klyuchnikova
St. Petersburg State Agrarian University; BIOTROF Limited Liability Company
Email: klyuchnikova.irinaa@yandex.ru
ORCID iD: 0009-0008-6484-1235
SPIN-code: 8822-5738
master's student, Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, building 2, Peterburgskoe highway, St. Petersburg, Pushkin, 196601, Russian Federation; 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Vasiliy A. Zaikin
BIOTROF Limited Liability Company
Email: dfcx@biotrof.ru
ORCID iD: 0009-0006-8029-9955
Biotechnologist of the Molecular Genetic Laboratory
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
Elena P. Gorfunkel
BIOTROF Limited Liability Company
Email: elena@biotrof.ru
ORCID iD: 0000-0002-6843-8733
SPIN-code: 2958-6204
Quality controller
Russian Federation, 8, Malinovskaya Str., St. Petersburg, Pushkin, 196602, Russian Federation
References
- Egorov, I. A., Manukyan, V. A., & Lankova, T. N. (2013). Methodology for conducting scientific and production research on feeding poultry. Molecular genetic methods for determining intestinal microflora. Sergiev Posad: Vsyo Sergiev Posad. 51 p. ISBN: 978-5-91582-047-9 EDN: https://elibrary.ru/SDOKYP
- Yildyrym, E. A., Grozina, A. A., Vertiprakhov, V. G., Ilyina, L. A., Filippova, V. A., Laptev, G. Yu., Ponomareva, E. S., Dubrovin, A. V., Kalitkina, K. A., Molotkov, V. V., Akhmatchin, D. A., Brazhnik, E. A., Novikova, N. I., & Tyurina, D. G. (2022). Composition and metabolic potential of the gut microbiome of broilers Gallus Gallus L. under the influence of feed additives in experimental T-2 toxinosis. Agricultural Biology, 57(4), 743-761. https://doi.org/10.15389/agrobiology.2022.4.743rus EDN: https://elibrary.ru/DRKMVH
- Laptev, G. Yu., Yildyrym, E. A., Tyurina, D. G., Ilyina, L. A., Filippova, V. A., Kalitkina, K. A., Dubrovin, A. V., Novikova, N. I., Melikidi, V. Kh., Gorfunkel, E. P., Ponomareva, E. S., & Okolelova, T. M. (2022). Is glyphosate really harmless? Compound Feed, 7-8, 69-70. EDN: https://elibrary.ru/XJFXLL
- Binek, M., Cisek, A. A., Rzewuska, M., Chrobak-Chmiel, D., Stefanska, I., Kizerwetter-Swida, M. (2017). Chicken intestinal microbiome: Development and function. Med. Weter, 73, 618-625. https://doi.org/10.21521/mw.5790
- Bortoluzzi, C., Scapini, L. B., Ribeiro, M. V., Pivetta, M. R., Buzim, R., Fernandes, J. I. M. (2019). Effects of β-mannanase supplementation on the intestinal microbiota composition of broiler chickens challenged with a coccidiosis vaccine. Livestock Science, 228, 187-194.
- Bortoluzzi, C., Tamburini, I., Geremia, J. (2023). Microbiome modulation, microbiome protein metabolism index, and growth performance of broilers supplemented with a precision biotic. Poult Sci, 102(5), 102595. https://doi.org/10.1016/j.psj.2023.102595 EDN: https://elibrary.ru/TFMWKJ
- Chen, H. L., Zhao, X. Y., Zhao, G. X., Huang, H. B., Li, H. R., Shi, C. W., Yang, W. T., Jiang, Y. L., Wang, J. Z., Ye, L. P., Zhao, Q., Wang, C. F., Yang, G. L. (2020). Dissection of the cecal microbial community in chickens after Eimeria tenella infection. Parasites and Vectors, 13, 1-15. https://doi.org/10.1186/s13071-020-3897-6 EDN: https://elibrary.ru/KLVQIE
- Cheng, X., Zheng, H., Wang, C., Wang, X., Fei, C., Zhou, W., & Zhang, K. (2022). Effects of salinomycin and ethanamizuril on the three microbial communities in vivo and in vitro. Front Microbiol, 13, 941259. https://doi.org/10.3389/fmi-cb.2022.941259 EDN: https://elibrary.ru/LYZGAW
- Chernevskaya, E., Beloborodova, N., Klimenko, N., Pautova, A., Shilkin, D., Gusarov, V., & Tyakht, A. (2020). Serum and fecal profiles of aromatic microbial metabolites reflect gut microbiota disruption in critically ill patients: a prospective observational pilot study. Crit. Care, 24, 312. https://doi.org/10.1186/s-13054-020-03031-0 EDN: https://elibrary.ru/OVJQNC
- Chuang, W. Y., Lin, L. J., Shih, H. Der, Shy, Y. M., Chang, S. C., & Lee, T. T. (2021). Intestinal Microbiota, Anti-Inflammatory, and Anti-Oxidative Status of Broiler Chickens Fed Diets Containing Mushroom Waste Compost By-Products. Animals, 11, 2550. https://doi.org/10.3390/ani11092550 EDN: https://elibrary.ru/JLMNFW
- Collins, S. L., & Patterson, A. D. (2020). The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B, 10(1), 19-32. https://doi.org/10.1016/j.apsb.2019.12.001 EDN: https://elibrary.ru/NRUGNV
- Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. (2017). Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep, 5, 156-163. https://doi.org/10.1016/j.toxrep.2017.12.025 EDN: https://elibrary.ru/VFCTZO
- El, A. G., Mohsen, H., & Mohamed, S. S. (2012). Effect of Feeding a Combination of Zinc, Manganese and Copper Methionine Chelates of Early Lactation High Producing Dairy Cow. Food and Nutrition Sciences, 1084-1091. https://doi.org/10.4236/FNS.2012.38144
- Fathi, M. A., Abdelghani, E., Shen, D., Ren, X., Dai, P., Li, Z., Tang, Q., Li, Y., & Li, C. (2019). Effect of in ovo glyphosate injection on embryonic development, serum biochemistry, antioxidant status and histopathological changes in newly hatched chicks. J. Anim. Physiol. Anim. Nutr, 103, 1776-1784. https://doi.org/10.1111/jpn.13181
- Fathi, M. A., Han, G., Kang, R., Shen, D., Shen, J., & Li, C. (2020). Disruption of cytochrome P450 enzymes in the liver and small intestine in chicken embryos in ovo exposed to glyphosate. Environ. Sci, 27, 16865-16875. https://doi.org/10.1007/s11356-020-08269-3 EDN: https://elibrary.ru/CBTYZL
- Frick, P. G., Riedler, G., & Brögli, H. (1967). Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol, 23, 387-389. https://doi.org/10.1152/jappl.1967.23.3.387
- Grau, D., Grau, N., Gascuel, Q., Paroissin, C., Stratonovitch, C., Lairon, D., Devault, D. A., & Di Cristofaro, J. (2022). Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ. Sci. Pollut. Res. Int, 29, 32882-32893. https://doi.org/10.1007/s11356-021-18110-0 EDN: https://elibrary.ru/DJWFDU
- Gustafsson, B. E., Daft, F. S., McDaniel, E. G., Smith, J. C., & Fitzgerald, R. J. (1962). Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats. The Journal of Nutrition, 78, 461-468. https://doi.org/10.1093/jn/78.4.461
- Hill, J. H., & Round, J. L. (2021). SnapShot: Microbiota effects on host physiology. Cell, 184, 2796-2796. https://doi.org/10.1016/j.cell.2021.04.026 EDN: https://elibrary.ru/DMSPLA
- Hill, M. J. (1997). Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer Prevention, 6, S43-S45. https://doi.org/10.1097/00008469-199703001-00009
- Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab, 16(5), 559-564. https://doi.org/10.1016/j.cmet.2012.10.007
- Huang, S., Zhang, C., Xu, T., Shaukat, A., He, Y., Chen, P., Lin, L., Yue, K., Cao, Q., & Tong, X. (2022). Integrated Fecal Microbiome and Metabolomics Reveals a Novel Potential Biomarker for Predicting Tibial Dyschondroplasia in Chickens. Front Physiol, 13, 887207. https://doi.org/10.3389/fphys.2022.887207 EDN: https://elibrary.ru/HYQFGK
- Kimura, N., Mimura, F., Nishida, S., & Kobayashi, A. (1976). Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poult. Sci, 55, 1375-1383. https://doi.org/10.3382/ps.0551375
- Lakshminarayanan, B., Harris, H. M. B., Coakley, M., O’Sullivan, Ó., Stanton, C., Pruteanu, M., Shanahan, F., O’Toole, P. W., Ross, R. P., & On Behalf Of The Eldermet Consortium. (2013). Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. Journal of medical microbiology, 62(3), 457-466. https://doi.org/10.1099/jmm.0.052258-0
- Lee, S., La, T. M., Lee, H. J., Choi, I. S., Song, C. S., Park, S. Y., Lee, J. B., & Lee, S. W. (2019). Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep, 9, 6838. https://doi.org/10.1038/s41598-019-43280-w EDN: https://elibrary.ru/KVQXQB
- Lima, J. (2023). Estimating Microbial Protein Synthesis in the Rumen—Can ‘Omics’ Methods Provide New Insights into a Long-Standing Question? Vet. Sci, 10.
- Lu, C., Yan, Y., Jian, F., & Ning, C. (2021). Coccidia-microbiota interactions and their effects on the host. Front. Cell Infect. Microbiol, 11, 751481. https://doi.org/10.3389/fcimb.2021.751481 EDN: https://elibrary.ru/IPCEDA
- Maruvada, P., Leone, V., Kaplan, L. M., & Chang, E. B. (2017). The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe, 22, 589-599. https://doi.org/10.1016/j.chom.2017.10.005 EDN: https://elibrary.ru/YKKOZQ
- McCormack, U. M., Curiao, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol, 83, e00380-17. https://doi.org/10.1128/AEM.00380-17
- McDonald, J. E., Marchesi, J. R., & Koskella, B. (2020). Application of ecological and evolutionary theory to microbiome community dynamics across systems. Proc. Biol. Sci, 287, 20202886. https://doi.org/10.1098/rspb.2020.2886 EDN: https://elibrary.ru/ECDLLF
- Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Wells, J. M., & Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol, 16, 255-261. https://doi.org/10.1016/j.mib.2013.06.003
- Moon, C. D., Young, W., Maclean, P. H., Cookson, A. L., & Bermingham, E. N. (2018). Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen, 7(5), e00677. https://doi.org/10.1002/mbo3.677 EDN: https://elibrary.ru/CTMKJI
- Orrell, K. E., & Melnyk, R. A. (2021). Large Clostridial Toxins: Mechanisms and Roles in Disease. Microbiol Mol Biol Rev, 85(3), e0006421. https://doi.org/10.1128/MMBR.00064-21 EDN: https://elibrary.ru/IMHVYN
- Pereira, R., Bortoluzzi, C., Durrer, A., Fagundes, N. S., Pedroso, A. A., Rafael, J. M., de Lima Perim, J. E., Zavarize, K. C., Napty, G. S., & Andreote, F. D. (2019). Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. J. Anim. Physiol. Anim. Nutr, 103, 72-86. https://doi.org/10.1111/jpn.13004
- Pires, P. G. D. S., Torres, P., Teixeira Soratto, T. A., Filho, V. B., Hauptli, L., Wagner, G., Haese, D., Pozzatti, C. D., & Moraes, P. O. (2022). Comparison of functional-oil blend and anticoccidial antibiotics effects on performance and microbiota of broiler chickens challenged by coccidiosis. PLoS One, 17(7), e0270350. https://doi.org/10.1371/journal.pone.0270350 EDN: https://elibrary.ru/LDTMUN
- Rajilic-Stojanovic, M., & De Vos, W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev, 38(5), 996-1047. https://doi.org/10.1111/1574-6976.12075
- Robinson, K., Becker, S., Xiao, Y., Lyu, W., Yang, Q., Zhu, H., Yang, H., Zhao, J., & Zhang, G. (2019). Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers. Microorganisms, 7(9), 282. https://doi.org/10.3390/microorganisms7090282
- Saxena, S., Saxena, V. K., Tomar, S., Sapcota, D., & Gonmei, G. (2016). Characterisation of caecum and crop microbiota of Indian indigenous chicken targeting multiple hypervariable regions within 16S rRNA gene. Brit. Poult. Sci, 57, 381-389. https://doi.org/10.1080/00071668.2016.1161728
- Schokker, D., de Klerk, B., Borg, R., Bossers, A., & Rebel, J. M. J. (2021). Factors Influencing the Succession of the Fecal Microbiome in Broilers. Livest. Sci, 247, 104486. https://doi.org/10.1016/j.livsci.2021.104486 EDN: https://elibrary.ru/PDMHXO
- Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N. S., & Kabsch, W. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci, 98, 1376-1380. https://doi.org/10.1073/pnas.98.4.1376 EDN: https://elibrary.ru/LSWCXN
- Schwartz, D. J., Langdon, A. E., & Dantas, G. (2020). Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med, 12, 82. https://doi.org/10.1186/s13073-020-00782-x EDN: https://elibrary.ru/AJGCKF
- Shin, B., Park, C., & Park, W. (2020). Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl. Microbiol. Biotechnol, 104, 1423-1435. https://doi.org/10.1007/s00253-019-10317-z EDN: https://elibrary.ru/QTZXAD
- Simpson, K. M., Callan, R. J., & Van Metre, D. C. (2018). Clostridial Abomasitis and Enteritis in Ruminants. Vet Clin North Am Food Anim Pract, 34(1), 155-184. https://doi.org/10.1016/j.cvfa.2017.10.010
- Szabó, R., Szemerédy, G., Kormos, É., Lehel, J., & Budai, P. (2018). Studies on joint toxic effects of a glyphosate herbicide (FOZÁT 480) and a heavy metal (cadmium) on chicken embryos. AGR, 2, 37-43.
- Waite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol, 5, 223. https://doi.org/10.3389/fmicb.2014.00223
- Willson, N. L., Nattrass, G. S., Hughes, R. J., Moore, R. J., Stanley, D., Hynd, P. I., & Forder, R. E. A. (2018). Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Appl. Microbiol. Biotechnol, 102, 9317-9329. https://doi.org/10.1007/s00253-018-9281-1 EDN: https://elibrary.ru/VJIVQO
- Xi, Y., Shuling, N., Kunyuan, T., Qiuyang, Z., Hewen, D., ChenCheng, G., Tianhe, Y., Liancheng, L., & Xin, F. (2019). Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb. Pathog, 132, 325-334. https://doi.org/10.1016/j.micpath.2019.05.014 EDN: https://elibrary.ru/FZDTAH
- Xu, S. Y., Aweya, J. J., Li, N., Deng, R. Y., Chen, W. Y., Tang, J., & Cheong, K. L. (2019). Microbial catabolism of porphyra haitanensis polysaccharides by human gut microbiota. Food Chem, 289, 177-186. https://doi.org/10.1016/j.food-chem.2019.03.050
- Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., & Huang, H. (2021). Oscillospira - a candidate for the next-generation probiotics. Gut Microbes, 13(1), 1987783. https://doi.org/10.1080/19490976.2021.1987783 EDN: https://elibrary.ru/IDUYRW
- Yildirim, E. A., Laptev, G. Y., Tiurina, D. G., Gorfunkel, E. P., Ilina, L. A., Filippova, V. A., Dubrovin, A. V., Brazhnik, E. A., Novikova, N. I., Melikidi, V. K., Kalitkina, K. A., Ponomareva, E. S., Griffin, D. K., & Romanov, M. N. (2024). Investigating adverse effects of chronic dietary exposure to herbicide glyphosate on zootechnical characteristics and clinical, biochemical and immunological blood parameters in broiler chickens. Vet Res Commun, 48(1), 153-164. https://doi.org/10.1007/s11259-023-10195-x EDN: https://elibrary.ru/PUTFZG
- Zhang, J., Jin, W., Jiang, Y., Xie, F., & Mao, S. (2022). Response of milk performance, rumen and hindgut microbiome to dietary supplementation with Aspergillus oryzae fermentation extracts in dairy cows. Curr. Microbiol, 79, 113.
- Zhang, K., Wang, C., Li, Y., He, J., Wang, M., & Wang, X. (2020). Rat two-generation reproductive toxicity and teratogenicity studies of a novel coccidiostat - Ethanamizuril. Regul. Toxicol. Pharmacol, 113, 104623. https://doi.org/10.1016/j.yrtph.2020.104623 EDN: https://elibrary.ru/BUZXEZ
- Zhang, Z., Tang, H., Chen, P., Xie, H., & Tao, Y. (2019). Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct. Target. Ther, 4, 41. https://doi.org/10.1038/s41392-019-0074-5 EDN: https://elibrary.ru/FJSSIY
- Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res, 30, 492-506. https://doi.org/10.1038/s41422-020-0332-7 EDN: https://elibrary.ru/POIHUF
- Zhou, S., Wang, F., Wong, E. T., Fonkem, E., Hsieh, T. C., Wu, J. M., & Wu, E. (2013). Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Current medicinal chemistry, 20(33), 4095-4101. https://doi.org/10.2174/15672050113109990199
Supplementary files
