Электронные курительные устройства – опасное увлечение детей и подростков

Обложка

Цитировать

Полный текст

Аннотация

Распространение моды на использование электронных курительных устройств среди детей и подростков в настоящее время носит характер эпидемии. Это связано с поддерживаемым производителями заблуждением о мнимой безопасности электронных сигарет и вейпов по сравнению с табакокурением. Однако на сегодняшний день установлено, что использование электронных курительных устройств, напротив, приводит к увеличению никотиновой зависимости, повышает риск табакокурения и двойного потребления. Долгосрочное влияние ингаляционного аэрозоля, продуцируемого электронными курительными устройствами, на состояние здоровья пока изучено не в полной мере. Однако исследования установили его цитотоксическое и иммуносупрессивное влияние, способность провоцировать воспаление и оксидативный стресс, нарушение мукоцилиарного клиренса, изменение реактивности дыхательных путей, повреждение ДНК и нарушение процессов ее репарации. Показана связь между использованием электронных курительных устройств и развитием бронхиальной астмы. Потенциальные неблагоприятные последствия воздействия электронных сигарет на здоровье нуждаются в тщательном изучении, особенно у детей и подростков.

Об авторах

Ирина Игоревна Пшеничникова

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Email: PshenichnikovaII@rmapo.ru
ORCID iD: 0000-0002-0058-3803

канд. мед. наук, доц. каф. педиатрии им. акад. Г.Н. Сперанского ФГБОУ ДПО РМАНПО

Россия, Москва

Алексей Владимирович Комаров

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0001-9039-6413

ординатор каф. педиатрии им. акад. Г.Н. Сперанского ФГБОУ ДПО РМАНПО

Россия, Москва

Арина Демьяновна Пшеничникова

ГБОУ «Школа №1584»

Email: zakharova-rmapo@yandex.ru

ученица 11-го класса ГБОУ «Школа №1584»

Россия, Москва

Ирина Николаевна Захарова

ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России

Автор, ответственный за переписку.
Email: zakharova-rmapo@yandex.ru
ORCID iD: 0000-0003-4200-4598

д-р мед. наук, проф., зав. каф. педиатрии им. акад. Г.Н. Сперанского ФГБОУ ДПО РМАНПО, засл. врач РФ

Россия, Москва

Список литературы

  1. Cruz TB, McConnell R, Low BW, et al. Tobacco marketing and subsequent use of cigarettes, e-cigarettes, and hookah in adolescents. Nicotine Tob Res. 2019;21(7):926-32. doi: 10.1093/ntr/nty107
  2. Kennedy RD, Awopegba A, De León E, Cohen JE. Global approaches to regulating electronic cigarettes. Tob Control. 2017;26(4):440-5. doi: 10.1136/tobaccocontrol-2016-053179
  3. Cahn Z, Siegel M. Electronic cigarettes as a harm reduction strategy for tobacco control: a step forward or a repeat of past mistakes? J Public Health Policy. 2011;32(1):16-31. doi: 10.1057/jphp.2010.41
  4. Grana R, Benowitz N, Glantz SA. E-cigarettes: A scientific review. Circulation. 2014;129(19):1972-86. doi: 10.1161/CIRCULATIONAHA.114.007667
  5. Wieslander G, Norbäck D, Lindgren T. Experimental exposure to propylene glycol mist in aviation emergency training: Acute ocular and respiratory effects. Occup Environ Med. 2001;58(10):649-55. doi: 10.1136/oem.58.10.649
  6. Landman ST, Dhaliwal I, Mackenzie CA, et al. Life-threatening bronchiolitis related to electronic cigarette use in a Canadian youth. CMAJ. 2019;191(48):E1321-31. doi: 10.1503/cmaj.191402
  7. Viswam D, Trotter S, Burge PS, Walters GI. Respiratory failure caused by lipoid pneumonia from vaping e-cigarettes. BMJ Case Rep. 2018;2018:bcr-2018-224350. doi: 10.1136/bcr-2018-224350
  8. Andrikopoulos GI, Farsalinos K, Poulas K. Electronic nicotine delivery systems (ENDS) and their relevance in oral health. Toxics. 2019;7(4):61. doi: 10.3390/toxics7040061
  9. Ali FRM, Vallone D, Seaman EL, et al. Evaluation of statewide restrictions on flavored e-cigarette sales in the US from 2014 to 2020. JAMA Netw Open. 2022;5(2):e2147813. doi: 10.1001/jamanetworkopen.2021.47813
  10. Hanewinkel R, Niederberger K, Pedersen A, et al. E-cigarettes and nicotine abstinence: a meta-analysis of randomised controlled trials. Eur Respir Rev. 2022;31(163):210215. doi: 10.1183/16000617.0215-2021
  11. O’Brien D, Long J, Quigley J, et al. Association between electronic cigarette use and tobacco cigarette smoking initiation in adolescents: a systematic review and meta-analysis. BMC Public Health. 2021;21(1):954. doi: 10.1186/s12889-021-10935-1
  12. Clapp PW, Jaspers I. Electronic cigarettes: their constituents and potential links to asthma. Curr Allergy Asthma Rep. 2017;17(11):79. doi: 10.1007/s11882-017-0747-5
  13. Blagev DP, Harris D, Dunn AC, et al. Clinical presentation, treatment, and short-term outcomes of lung injury associated with e-cigarettes or vaping: a prospective observational cohort study. Lancet. 2019;394(10214):2073-83. doi: 10.1016/S0140-6736(19)32679-0
  14. Layden JE, Ghinai I, Pray I, et al. Pulmonary illness related to e-cigarette use in Illinois and Wisconsin – Final Report. N Engl J Med. 2020;382(10):903-16. doi: 10.1056/NEJMoa1911614
  15. Ghinai I, Pray IW, Navon L, et al. E-cigarette product use, or vaping, among persons with associated lung injury – Illinois and Wisconsin, April–September 2019. MMWR Morb Mortal Wkly Rep. 2019;68(39):865-9. doi: 10.15585/mmwr.mm6839e2
  16. Kalininskiy A, Bach CT, Nacca NE, et al. E-cigarette, or vaping, product use associated lung injury (EVALI): case series and diagnostic approach. Lancet Respir Med. 2019;7(12):1017-26. doi: 10.1016/S2213-2600(19)30415-1
  17. Triantafyllou GA, Tiberio PJ, Zou RH, et al. Vaping-associated acute lung injury: a case series. Am J Respir Crit Care Med. 2019;200(11):1430-1. doi: 10.1164/rccm.201909-1809LE
  18. Krishnasamy VP, Hallowell BD, Ko JY, et al. Update: characteristics of a nationwide outbreak of e-cigarette, or vaping, product use-associated lung injury-United States, August 2019 – January 2020. MMWR Morb Mortal Wkly Rep. 2020;69(3):90-4. doi: 10.15585/mmwr.mm6903e2
  19. Yan XS, D’Ruiz C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul Toxicol Pharmacol. 2015;71(1):24-34.
  20. Farsalinos KE, Tsiapras D, Kyrzopoulos S, et al. Acute effects of using an electronic nicotine-delivery device (electronic cigarette) on myocardial function: comparison with the effects of regular cigarettes. BMC Cardiovasc Disord. 2014;14:78. doi: 10.1186/1471-2261-14-78
  21. Carnevale R, Sciarretta S, Violi F, et al. Acute impact of tobacco vs electronic cigarette smoking on oxidative stress and vascular function. Chest. 2016;150(3):606-12. doi: 10.1016/j.chest.2016.04.012
  22. Antoniewicz L, Bosson JA, Kuhl J, et al. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis. 2016;255:179-85. doi: 10.1016/j.atherosclerosis.2016.09.064
  23. Leigh NJ, Lawton RI, Hershberger PA, Goniewicz ML. Flavourings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS). Tob Control. 2016;25(Suppl. 2):ii81-7. doi: 10.1136/tobaccocontrol-2016-053205
  24. Putzhammer R, Doppler C, Jakschitz T, et al. Vapours of US and EU market leader electronic cigarette brands and liquids are cytotoxic for human vascular endothelial cells. PloS One. 2016;11(6):e0157337. doi: 10.1371/journal.pone.0157337
  25. Anderson C, Majeste A, Hanus J, Wang S. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells. Toxicol Sci. 2016;154(2):332-40. doi: 10.1093/toxsci/kfw166
  26. Rowell TR, Reeber SL, Lee SL, et al. Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L52-66. doi: 10.1152/ajplung.00392.2016
  27. Omaiye EE, McWhirter KJ, Luo W, et al. High-nicotine electronic cigarette products: toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem Res Toxicol. 2019;32(6):1058-69. doi: 10.1021/acs.chemrestox.8b00381
  28. Hua M, Omaiye EE, Luo W, et al. Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci Rep. 2019;9(1):2782. doi: 10.1038/s41598-019-38978-w
  29. Escobar YNH, Nipp G, Cui T, et al. In vitro toxicity and chemical characterization of aerosol derived from electronic cigarette humectants using a newly developed exposure system. Chem Res Toxicol. 2020;33(7):1677-88. doi: 10.1021/acs.chemrestox.9b00490
  30. Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol. 2018;314(4):L642-53. doi: 10.1152/ajplung.00275.2017
  31. Scheffler S, Dieken H, Krischenowski O, et al. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells. Int J Environ Res Public Health. 2015;12(4):3915-25. doi: 10.3390/ijerph120403915
  32. Schweitzer KS, Chen SX, Law S, et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):L175-87. doi: 10.1152/ajplung.00411.2014
  33. Crotty Alexander LE, Drummond CA, Hepokoski M, et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R834-47. doi: 10.1152/ajpregu.00270.2017
  34. Larcombe AN, Janka MA, Mullins BJ, et al. The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am J Physiol Lung Cell Mol Physiol. 2017;313(1):L67-79. doi: 10.1152/ajplung.00203.2016
  35. Lerner CA, et al. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PloS One. 2015;10(2):e0116732. doi: 10.1152/ajplung.00203.2016
  36. Scott A, Lugg ST, Aldridge K, et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax. 2018;73(12):1161-9. doi: 10.1136/thoraxjnl-2018-211663
  37. Clapp PW, Lavrich KS, van Heusden CA, et al. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L470-86. doi: 10.1152/ajplung.00304.2018
  38. Wu Q, Jiang D, Minor M, Chu HW. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PloS One. 2014;9(9):e108342. doi: 10.1371/journal.pone.0108342
  39. Sussan TE, Gajghate S, Thimmulappa RK, et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PloS One. 2015;10(2):e0116861. doi: 10.1371/journal.pone.0116861
  40. Hwang JH, Lyes M, Sladewski K, et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med (Berl). 2016;94(6):667-79. doi: 10.1007/s00109-016-1378-3
  41. Corriden R, Moshensky A, Bojanowski CM, et al. E-cigarette use increases susceptibility to bacterial infection by impairment of human neutrophil chemotaxis, phagocytosis, and NET formation. Am J Physiol Cell Physiol. 2020;318(1):C205-14. doi: 10.1152/ajpcell.00045.2019
  42. Ganapathy V, Manyanga J, Brame L, et al. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PloS One. 2017;12(5):e0177780. doi: 10.1371/journal.pone.0177780
  43. Muthumalage T, Lamb T, Friedman MR, Rahman I. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci Rep. 2019;9(1):19035. doi: 10.1038/s41598-019-51643-6
  44. Lee HW, Park SH, Weng MW, et al. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci USA. 2018;115(7):E1560-9. doi: 10.1073/pnas.1718185115
  45. Xian S, Chen Y. E-cigarette users are associated with asthma disease: A meta-analysis. Clin Respir J. 2021;15(5):457-66. doi: 10.1111/crj.13346
  46. Li X, Zhang Y, Zhang R, et al. Association Between E-Cigarettes and Asthma in Adolescents: A Systematic Review and Meta-Analysis. Am J Prev Med. 2022;62(6):953-60. doi: 10.1016/j.amepre.2022.01.015

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».