Transformation of managerial processes in corporate environment: implementing intelligent agents for enhanced decision-making efficiency

Cover Page

Cite item

Abstract

this research addresses the problem of managerial process inefficiency in corporate environments, characterized by cognitive overload among managers and unproductive allocation of working time. Drawing upon design science research methodology and empirical data from in-depth interviews, a modular architecture of an intelligent agent with a hybrid knowledge management system has been developed. Three priority managerial automation scenarios have been identified. A triadic system of performance metrics is proposed, adapting the project management triangle model to the specifics of AI agents. The methodology provides a reproducible approach to digital transformation of managerial processes with measurable business outcomes.

About the authors

A. A Sadkovkin

Russian Foreign Trade Academy; Russian Presidential Academy of National Economy and Public Administration

D. R Gulyak

Russian Presidential Academy of National Economy and Public Administration

References

  1. Xi Z., Chen W., Guo X. et al. The Rise and Potential of Large Language Model Based Agents: A Survey // arXiv preprint. 2023. arXiv:2309.07864. 86 p.
  2. Park J.S., O'Brien J.C., Cai C.J., Morris M.R., Liang P., Bernstein M.S. Generative Agents: Interactive Simulacra of Human Behavior // Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST '23). San Francisco, CA, USA, October 29 – November 01, 2023. New York: ACM, 2023. P. 1 – 22. doi: 10.1145/3586183.3606763
  3. День Инвестора 2023 [Электронный ресурс] // ПАО Сбербанк. Режим доступа: https://investorday.sber.ru/assets/presentation-ru.cdae762a.pdf (дата обращения: 01.08.2025)
  4. Презентация о компании МКПАО «ЯНДЕКС». II квартал 2025 [Электронный ресурс] // Яндекс. Режим доступа: https://yastatic.net/s3/ir-docs/docs/2025/q2/16e7h56233gd2c714f200d1j801ec30b/2Q25_IR_Presentation_RUS.pdf (дата обращения: 01.08.2025)
  5. Alphabet Investor Relations [Electronic resource] // Alphabet Inc. Access mode: https://abc.xyz/site-map/default.aspx (date of access: 01.08.2025)
  6. Investor Presentation. October 2024 [Electronic resource] // NVIDIA Corporation. Access mode: https://s201.q4cdn.com/141608511/files/doc_presentations/2024/Oct/NVIDIA-Investor-Presentation-Oct-2024.pdf (date of access: 01.08.2025)
  7. Gartner Predicts: By 2028, 33% of Enterprise Software Applications Will Include Agentic AI [Electronic resource] // Gartner, Inc. 2024. Access mode: https://www.gartner.com/en/newsroom/press-releases (date of access: 15.08.2025)
  8. The Chief AI Officer: The New Imperative For The C-Suite [Electronic resource] // Xite Create. Access mode: https://xite.ai/blogs/the-chief-ai-officer-the-new-imperative-for-the-c-suite/ (date of access: 14.08.2025)
  9. Yao S., Zhao J., Yu D. et al. ReAct: Synergizing Reasoning and Acting in Language Models // arXiv preprint. 2022. arXiv:2210.03629. 25 p.
  10. LangGraph: Multi-Agent Workflows [Electronic resource] // LangChain Blog. Access mode: https://blog.langchain.com/langgraph-multi-agent-workflows/ (date of access: 14.08.2025)
  11. Packer C., Wooders S., Lin K. et al. MemGPT: Towards LLMs as Operating Systems // arXiv preprint. 2024. arXiv:2310.08560. 28 p.
  12. Snegirev A., Tikhonova M., Maksimova A., Fenogenova A., Abramov A. The Russian-focused embedders' exploration: ruMTEB benchmark and Russian embedding model design // arXiv preprint. 2024. arXiv:2408.12503. 18 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).