🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On a Probability Density Equation

Capa

Citar

Texto integral

Resumo

The stationary Schrödinger equation depending on spatial coordinates has been considered. The problem of obtaining a differential relationship for the wave function squared was posed. By extracting Schrödinger’s equation itself from this relationship a differential equation for a physically interpretable quantity, i.e. the probability density (wave function squared), has been formulated. As an example the one-dimensional case admitting a simple analytic solution was considered. The solution obtained is shown to be a solution squared of the corresponding nonlinear differential equation for the probability density. In the final section a more general non-stationary case was considered for the potential involving a time-dependent term, such potentials are found in the non-stationary perturbation theory. The constant in separating the variables remains real. Thus the procedure considered proves to be similar to that presented above for the stationary equation.

Sobre autores

S Kopylov

MAMI Moscow State Technical University

Email: KopSV@mail.ru
Physics Department

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML