On a set of tests for numerical methods of integrating differential equations, based on the Calogero system

Cover Page

Cite item

Full Text

Abstract

Based on the completely integrable Calogero dynamical system, which describes the one-dimensional many-body problem, a tool for testing difference schemes has been developed and implemented in the original fdm package integrated into the Sage computer algebra system. This work shows how the developed tools can be used to examine the behavior of numerical solutions near the collision point and how to study the conservatism of the difference scheme. When detecting singularities using Alshina’s method, a difficulty was discovered associated with false order fluctuations. One of the main advantages of this set of tests is the purely algebraic nature of the solutions and integrals of motion.

About the authors

Mikhail D. Malykh

RUDN University; Joint Institute for Nuclear Research

Author for correspondence.
Email: malykh_md@rudn.ru
ORCID iD: 0000-0001-6541-6603
Scopus Author ID: 6602318510
ResearcherId: P-8123-2016

Doctor of Physical and Mathematical Sciences, Assistant Professor

6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation; 6 Joliot-Curie St., Dubna, 141980, Russian Federation

Wang Shiwei

RUDN University

Email: 1995wsw@gmail.com
ORCID iD: 0009-0007-6504-8370

Ph.D. student

6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation

Yu Ying

Kaili University

Email: 45384377@qq.com
ORCID iD: 0000-0002-4105-2566

Assistant Professor of Department of Mathematics and Applied Mathematics

3 Kaiyuan Rd., Kaili, 556011, People’s Republic of China

References

  1. A. Baddour, M. M. Gambaryan, L. Gonzalez, and M. D. Malykh, “On implementation of numerical methods for solving ordinary differential equations in computer algebra systems,” Programming and Computer Software, vol. 5, pp. 412-422, 2023. doi: 10.1134/S0361768823020044.
  2. E. Hairer, G. Wanner, and S. P. Nørsett, Solving ordinary differential equations I, Nonstiff Problems, 3rd ed. Springer, 2008. doi: 10.1007/978-3-540-78862-1.
  3. E. Hairer, G. Wanner, and C. Lubich, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Berlin Heidelberg New York: Springer, 2000.
  4. X. Li and S. Liao, “More than six hundred new families of Newtonian periodic planar collisionless three-body orbits,” Sci. China-Phys. Mech. Astro., vol. 60, no. 12, p. 129 511, 2017.
  5. I. Hristov, R. Hristova, V. Dmitrašinović, and K. Tanikawa, “Threebody periodic collisionless equal-mass free-fall orbits revisited,” Arxive, vol. 2308.16159v1, 2023. DOI: arXiv.2308.16159.
  6. A. Baddour, M. Malykh, and L. Sevastianov, “On periodic approximate solutions of dynamical systems with quadratic right-hand side,” Journal of Mathematical Sciences, vol. 261, pp. 698-708, 2022. doi: 10.1007/s10958-022-05781-4.
  7. E. A. Alshina, N. N. Kalitkin, and P. V. Koryakin, “Diagnostics of singularities of exact solutions in computations with error control,” Computational Mathematics and Mathematical Physics, vol. 45, no. 10, pp. 1769-1779, 2005.
  8. M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up for one Sobolev problem: theoretical approach and numerical analysis,” Journal of Mathematical Analysis and Applications, vol. 442, no. 2, pp. 451-468, 2016. doi: 10.26089/NumMet.v20r328.
  9. M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov, “Blow-up phenomena in the model of a space charge stratification in semiconductors: analytical and numerical analysis,” Mathematical Methods in the Applied Sciences, vol. 40, no. 7, pp. 2336-2346, 2017. doi: 10.1002/mma.4142.
  10. M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and G. I. Shlyapugin, “On the blow-up phenomena for a one-dimensional equation of ionsound waves in a plasma: analytical and numerical investigation,” Mathematical Methods in the Applied Sciences, vol. 41, no. 8, pp. 2906-2929, 2018. doi: 10.1002/mma.4791.
  11. A. Baddour, A. A. Panin, L. A. Sevastianov, and M. D. Malykha, “Numerical determination of the singularity order of a system of differential equations,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 1, pp. 17-34, 2020. doi: 10.22363/2658-4670-2020-28-1-17-34.
  12. Y. Ying, A. Baddour, V. P. Gerdt, M. Malykh, and L. Sevastianov, “On the quadratization of the integrals for the many-body problem,” Mathematics, vol. 9, no. 24, 2021. doi: 10.3390/math9243208.
  13. A. Baddour and M. Malykh, “On difference schemes for the manybody problem preserving all algebraic integrals,” PPhysics of Particles and Nuclei, Letters, vol. 19, pp. 77-80, 2022. doi: 10.1134/S1547477122010022.
  14. J. Moser, Integrable Hamiltonian systems and spectral theory. Edizioni della Normale, 1983.
  15. A. A. Belov, “Numerical detection and study of singularities in solutions of differential equations,” Doklady Mathematics, vol. 93, no. 3, pp. 334- 338, 2016. doi: 10.1134/S1064562416020010.
  16. A. A. Belov, “Numerical diagnostics of solution blowup in differential equations,” Computational Mathematics and Mathematical Physics, vol. 57, no. 1, pp. 122-132, 2017. doi: 10.1134/S0965542517010031.

Supplementary files

Supplementary Files
Action
1. JATS XML