Postoperative cognitive dysfunction: current insights into pathogenesis, diagnosis, prevention, and management
- Authors: Riabchenko M.A.1, Rutkovskiy R.V.1, Leyderman I.N.1
-
Affiliations:
- National Medical Research Center named after V.A. Almazov
- Issue: Vol 6, No 3 (2025)
- Pages: 139-150
- Section: Systematic Reviews
- URL: https://journals.rcsi.science/2658-4433/article/view/363056
- DOI: https://doi.org/10.17816/clinutr696525
- EDN: https://elibrary.ru/ZOQRER
- ID: 363056
Cite item
Full Text
Abstract
BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication in patients undergoing surgery under general anesthesia, manifesting as cognitive impairement. POCD is currently diagnosed primarily using neuropsychological tests. However, identifying the association between biomarkers of neuronal injury and POCD may provide an additional diagnostic tool. It is crucial to understand the pathogenetic mechanisms of POCD for proper diagnosis and treatment.
AIM: This work aimed to analyze and summarize the latest data on the development, management, and diagnosis of POCD in adult patients.
METHODS: A thorough search and analysis of publications from 2020 to 2025 was conducted using the PubMed and eLibrary databases.
RESULTS: The review of publications identified perioperative risk factors for POCD and potential diagnostic biomarkers such as tau protein, interleukin-1β (IL-1β), calcium-binding protein S100B, matrix metalloproteinase-9 (MMP-9), APOE ε4 allele, beta-amyloid (Aβ), and NF-κB (nuclear transcription factor kappa B) signaling pathway. These biomarkers show promise for diagnosing POCS and developing targeted therapies. Additionally, a systematic classification of cognitive dysfunctions developed by the International Research Group was described, which helps avoid misinterpretation of acute postoperative factors.
CONCLUSION: POCD is a common, multidisciplinary challenge requiring the timely identification of high-risk patients and treatment of modifiable factors during the perioperative period. Key tools for improving postoperative quality of life include rational anesthesia management with bispectral index monitoring; use of propofol and dexmedetomidine; implementation of standardized preoperative testing; and Prehabilitation and enhanced recovery after surgery (ERAS) principles.
About the authors
Maksim A. Riabchenko
National Medical Research Center named after V.A. Almazov
Email: maksim2000z@mail.ru
ORCID iD: 0009-0006-0547-0492
Russian Federation, St. Petersburg
Roman V. Rutkovskiy
National Medical Research Center named after V.A. Almazov
Email: rutkovskiy_rv@almazovcentre.ru
ORCID iD: 0000-0002-9208-3741
SPIN-code: 7596-6364
MD
Russian Federation, St. PetersburgIlya N. Leyderman
National Medical Research Center named after V.A. Almazov
Author for correspondence.
Email: nl230970@gmail.com
ORCID iD: 0000-0001-8519-7145
SPIN-code: 7118-6680
MD, Dr. Sci. (Medicine), Professor
Russian Federation, St. PetersburgReferences
- Varpaei HA, Farhadi K, Mohammadi M, et al. Postoperative cognitive dysfunction: a concept analysis. Aging Clin Exp Res. 2024;36(1):133. doi: 10.1007/s40520-024-02779-7 EDN: WZWYTA
- Ovezov AM, Panteleeva MV, Knyazev AV, et al. Cognitive dysfunction and general anesthesia: from pathogenesis to prevention and correction. Neurology, neuropsychiatry, psychosomatics. 2016;8(3):101–105. doi: 10.14412/2074-2711-2016-3-101-105 EDN: WXGYCR
- Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30. doi: 10.1097/01.anes.0000296071.19434.1e
- Rundshagen I. Postoperative cognitive dysfunction. Dtsch Arztebl Int. 2014;111(8):119–125. doi: 10.3238/arztebl.2014.0119
- Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Anesthesiology. 2018;129(5):872–879. doi: 10.1097/ALN.0000000000002334
- Kong H, Xu LM, Wang DX. Perioperative neurocognitive disorders: A narrative review focusing on diagnosis, prevention, and treatment. CNS Neurosci Ther. 2022;28(8):1147–1167. doi: 10.1111/cns.13873 EDN: AZTTOT
- Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction - current preventive strategies. Clin Interv Aging. 2018;13:2267–2273. doi: 10.2147/CIA.S133896
- Yang X, Huang X, Li M, et al. Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv Neurol Disord. 2022;15. doi: 10.1177/17562864221114356
- Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017;119(S1):i115–i125. doi: 10.1093/bja/aex354
- Moody DM, Bell MA, Challa VR, et al. Brain microemboli during cardiac surgery or aortography. Ann Neurol. 1990;28(4):477–486. doi: 10.1002/ana.410280403
- Wang Y, Sands LP, Vaurio L, et al. The effects of postoperative pain and its management on postoperative cognitive dysfunction. Am J Geriatr Psychiatry. 2007;15(1):50–59. doi: 10.1097/01.JGP.0000229792.31009.da
- Norris D, Clark MS, Shipley S. The mental status examination. Am Fam Physician. 2016;94(8):635–641
- Qiao Y, Feng H, Zhao T, et al. Postoperative cognitive dysfunction after inhalational anesthesia in elderly patients undergoing major surgery: the influence of anesthetic technique, cerebral injury and systemic inflammation. BMC Anesthesiol. 2015;15(1):154. doi: 10.1186/s12871-015-0130-9 EDN: MUEFLQ
- Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59(5):1289–1295. doi: 10.1016/0003-4975(95)00106-u EDN: AOHTJF
- Cata JP, Abdelmalak B, Farag E. Neurological biomarkers in the perioperative period. Br J Anaesth. 2011;107(6):844–858. doi: 10.1093/bja/aer338 EDN: PKQUCB
- Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One. 2013;8(11):e79624. doi: 10.1371/journal.pone.0079624
- Wang X, Chen X, Wu F, et al. Relationship between postoperative biomarkers of neuronal injury and postoperative cognitive dysfunction: A meta-analysis. PLoS One. 2023;18(4):e0284728. doi: 10.1371/journal.pone.0284728 EDN: KDBNWM
- Fournier A, Krause R, Winterer G, Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci. 2015;7:112. doi: 10.3389/fnagi.2015.00112
- McDonagh DL, Mathew JP, White WD, et al. Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology. 2010;112(4):852–859. doi: 10.1097/ALN.0b013e3181d31fd7
- Wang CM, Chen WC, Zhang Y, et al. Update on the mechanism and treatment of sevoflurane-induced postoperative cognitive dysfunction. Front Aging Neurosci. 2021;13:702231. doi: 10.3389/fnagi.2021.702231 EDN: HMCXEU
- Zhao Q, Wan H, Pan H, Xu Y. Postoperative cognitive dysfunction-current research progress. Front Behav Neurosci. 2024;18:1328790. doi: 10.3389/fnbeh.2024.1328790 EDN: PAJRGK
- Li Z, Zhu Y, Kang Y, et al. Neuroinflammation as the underlying mechanism of postoperative cognitive dysfunction and therapeutic strategies. Front Cell Neurosci. 2022;16:843069. doi: 10.3389/fncel.2022.843069 EDN: TWAGCL
- Liu Y, Yang W, Xue J, et al. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother. 2023;167:115582. doi: 10.1016/j.biopha.2023.115582 EDN: CRMZTI
- Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020;21(11):1319–1326. doi: 10.1038/s41590-020-00812-1 EDN: QOHXJT
- Pellegrini C, Antonioli L, Calderone V, et al. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog Neurobiol. 2020;191:101806. doi: 10.1016/j.pneurobio.2020.101806 EDN: JTSRCG
- Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol Res. 2021;168:105586. doi: 10.1016/j.phrs.2021.105586 EDN: JXBCBG
- Wei Y, Zhang C, Wang D, et al. Progress in research on the effect of melatonin on postoperative cognitive dysfunction in older patients. Front Aging Neurosci. 2022;14:782358. doi: 10.3389/fnagi.2022.782358 EDN: ABAIVE
- Huang L, Zhang Y. The effect of intravenous and inhalation anesthesia in general on the cognition of elderly patients undergoing non-cardiac surgery: a systematic review and meta-analysis. Front Med. 2023;10:1280013. doi: 10.3389/fmed.2023.1280013 EDN: ZMUDAX
- Jafarzadeh A, Hadavi M, Hassanshahi G, et al. General anesthetics on immune system cytokines: a narrative review article. Anesth Pain Med. 2020;10(4):e103033. doi: 10.5812/aapm.103033 EDN: DPPLPM
- Sun H, Zhang G, Ai B, et al. A systematic review: comparative analysis of the effects of propofol and sevoflurane on postoperative cognitive function in elderly patients with lung cancer. BMC Cancer. 2019;19(1):1248. doi: 10.1186/s12885-019-6426-2 EDN: UWSZDC
- Dubovsky SL, Marshall D. Benzodiazepines remain important therapeutic options in psychiatric practice. Psychother Psychosom. 2022;91(5):307–334. doi: 10.1159/000524400 EDN: SISQCV
- Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi: 10.1038/s12276-022-00736-w EDN: LXZAQE
- Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi: 10.1038/nature11550
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
- Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13(6):2099. doi: 10.3390/nu13062099 EDN: RZOPTR
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2 EDN: UOKHLA
- Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204–219. doi: 10.1111/imm.12922
- Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi: 10.1007/s00401-009-0619-8 EDN: NBCRAV
- Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi: 10.1038/nature21029
- Teleanu DM, Niculescu AG, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938. doi: 10.3390/ijms23115938 EDN: EJGOXQ
- Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 2015;51(3):966–979. doi: 10.1007/s12035-014-8752-3 EDN: MMYZBL
- Samanta S, Chakraborty S, Bagchi D. Pathogenesis of neurodegenerative diseases and the protective role of natural bioactive components. J Am Nutr Assoc. 2024;43(1):20–32. doi: 10.1080/27697061.2023.2203235 EDN: ROBDTE
- Bubnova MG, Aronov DM, Sprikut AA, et al. Prehabilitation as an important stage before cardiac surgery. Cardiovascular Therapy and Prevention. 2021;20(6):2998. doi: 10.15829/1728-8800-2021-2998 EDN: JCANUP
- Neumark MI, Shmelev VV, Rakhmonov AA, Titova ZA. Prevention and treatment of postoperative cognitive dysfunction. Bulletin of Medical Science. 2022;2(26):93–101. doi: 10.31684/25418475_2022_2_93 EDN: TIBKHE
- Tian LJ, Yuan S, Zhou CH, Yan FX. The effect of intraoperative cerebral oximetry monitoring on postoperative cognitive dysfunction and ICU stay in adult patients undergoing cardiac surgery: an updated systematic review and meta-analysis. Front Cardiovasc Med. 2022;8:814313. doi: 10.3389/fcvm.2021.814313 EDN: LZPEIJ
- Yang W, Kong LS, Zhu XX, et al. Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2019;98(18):e15383. doi: 10.1097/MD.0000000000015383
- Kołodziej T, Maciejewski T, Mendrala K, et al. Enhanced recovery after cardiac surgery. Polish journal of cardio-thoracic surgery. 2019;16(1):32–36. doi: 10.5114/kitp.2019.83943
- Schwenk W. Optimized perioperative management (fast-track, ERAS) to enhance postoperative recovery in elective colorectal surgery. GMS Hyg Infect Control. 2022;17:Doc10. doi: 10.3205/dgkh000413
- Bogolepova AN. Postoperative cognitive dysfunction. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(8):7-11. doi: 10.17116/jnevro20221220817 EDN: EOMQNH
- Brodier EA, Cibelli M. Postoperative cognitive dysfunction in clinical practice. BJA Educ. 2021;21(2):75–82. doi: 10.1016/j.bjae.2020.10.004 EDN: YMPRYI
Supplementary files

