Prospects for protein-energy formulas in patients with osteoporosis
- Authors: Podkhvatilina A.S.1,2, Nikitin I.G.1, Dzhatieva D.N.2,3, Shvedova N.A.2,3
-
Affiliations:
- Pirogov Russian National Research Medical University
- Russian Federal Center for Treatment and Rehabilitation
- Medical Treatment and Diagnostic Center “Poliklinika.ru”
- Issue: Vol 5, No 2 (2024)
- Pages: 59-70
- Section: Reviews
- URL: https://journals.rcsi.science/2658-4433/article/view/292204
- DOI: https://doi.org/10.17816/clinutr642726
- ID: 292204
Cite item
Full Text
Abstract
Osteoporosis is a multifactorial metabolic bone disease characterized by reduced bone mineral density and compromised bone microarchitecture, leading to skeletal fractures from minimal external trauma. Osteoporosis is frequently accompanied by sarcopenia, reflecting the ongoing interaction between muscle and bone tissues from embryogenesis through advanced age, manifested at biochemical, endocrine, and mechanical levels, which may exacerbate both conditions.
One significant risk factor for patients with osteosarcopenia is malnutrition, associated with increased mortality, disability, cognitive decline, and a higher incidence of falls and fractures. Nutritional support and physical activity represent promising approaches for managing these patients. Timely administration of supplemental protein-energy formulas may offer additional benefits for patients with osteosarcopenia; however, currently, no standardized nutritional support strategy exists due to population heterogeneity among patients with osteoporosis and a lack of conclusive data on the benefits of such interventions without diagnosed sarcopenia.
This review summarizes contemporary data on nutrition in osteoporosis, evaluates existing nutritional support strategies, and assesses their potential efficacy. Special attention is given to the role of proteins, vitamins, and micronutrients in the prevention and treatment of osteoporosis, with recommended daily doses of these nutrients presented. The information provided herein may serve as a foundation for future research and the development of optimal nutritional support strategies for this population.
Full Text
##article.viewOnOriginalSite##About the authors
Anastasiya S. Podkhvatilina
Pirogov Russian National Research Medical University; Russian Federal Center for Treatment and Rehabilitation
Author for correspondence.
Email: nansy.rezerpin@gmail.com
ORCID iD: 0000-0001-5050-6390
SPIN-code: 2818-8561
MD
Russian Federation, Moscow; 3 Ivankovskoe highway, Moscow, 125367Igor G. Nikitin
Pirogov Russian National Research Medical University
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN-code: 3595-1990
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowDiana N. Dzhatieva
Russian Federal Center for Treatment and Rehabilitation; Medical Treatment and Diagnostic Center “Poliklinika.ru”
Email: doc.endo.dzhatieva@gmail.com
ORCID iD: 0009-0001-7324-8109
Russian Federation, 3 Ivankovskoe highway, Moscow, 125367; Moscow
Nataly A. Shvedova
Russian Federal Center for Treatment and Rehabilitation; Medical Treatment and Diagnostic Center “Poliklinika.ru”
Email: sova.bela@gmail.com
ORCID iD: 0009-0003-6326-5807
Russian Federation, 3 Ivankovskoe highway, Moscow, 125367; Moscow
References
- Belaya ZE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. EDN: TUONYE doi: 10.14341/osteo12930
- Smit AE, Meijer OC, Winter EM. The multi-faceted nature of age-associated osteoporosis. Bone Rep. 2024;20:101750–101750. doi: 10.1016/j.bonr.2024.101750
- Gielen E, Dupont J, Dejaeger M, Laurent M. Sarcopenia, osteoporosis and frailty. Metabolism. 2023;145:155638–155638. doi: 10.1016/j.metabol.2023.155638
- Kurmaev DP, Bulgakova SV, Treneva EV, et al. The Triple Burden of Osteoporosis, Sarcopenia, and Aging in Geriatrics (review). Russian Journal of Geriatric Medicine. 2024;(3):225–239. doi: 10.37586/2686-8636-3-2024-225-239
- Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing. 2018;48(1):16–31. doi: 10.1093/ageing/afy169
- Kirk B, Cawthon PM, Arai H, et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age and ageing. 2024;53(3). doi: 10.1093/ageing/afae052
- Papadopoulou SK, Papadimitriou K, Voulgaridou G, et al. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia — The Incidence of Osteosarcopenia: A Narrative Review. Nutrients. 2021;13(12):4499. doi: 10.3390/nu13124499
- Kupisz-Urbanska M, Marcinowska-Suchowierska E. Malnutrition in Older Adults—Effect on Falls and Fractures: a Narrative Review. Nutrients. 2022;14(15):3123. doi: 10.3390/nu14153123
- Shangguan X, Xiong J, Shi S, et al. Impact of the Malnutrition on Mortality in Patients With Osteoporosis: A Cohort Study From NHANES 2005–2010. Front Nutr. 2022;9:868166. doi: 10.3389/fnut.2022.868166
- Ji Y, Geng N, Niu Y, et al. Relationship between geriatric nutritional risk index and osteoporosis in type 2 diabetes in Northern China. BMC Endocrine Disorders. 2022;22(1). doi: 10.1186/s12902-022-01215-z
- Chou YY, Lin CF, Lee YS, et al. The associations of osteoporosis and possible sarcopenia with disability, nutrition, and cognition in community-dwelling older adults. BMC Geriatrics. 2023;23(1). doi: 10.1186/s12877-023-04431-x
- Rolland Y, Cesari M, Fielding RA, et al. Osteoporosis in Frail Older Adults: Recommendations for Research from the ICFSR Task Force 2020. J Frailty Aging. 2021;10(2):168–175. doi: 10.14283/jfa.2021.4
- Okayama A, Nakayama N, Kashiwa K, et al. Prevalence of Sarcopenia and Its Association with Quality of Life, Postural Stability, and Past Incidence of Falls in Postmenopausal Women with Osteoporosis: A Cross-Sectional Study. Healthcare. 2022;10(2):192. doi: 10.3390/healthcare10020192
- Mornar M, Novak A, Bozic J, et al. Quality of life in postmenopausal women with osteoporosis and osteopenia: associations with bone microarchitecture and nutritional status. Qual Life Res. 2023;33(2):561–572. doi: 10.1007/s11136-023-03542-7
- Safonova YA, Zotkin EG. Sarcopenia in older patients with osteoarthritis of large joints. Rheumatology Science and Practice. 2019;57(2):154–159. EDN: MDKBGG doi: 10.14412/1995-4484-2019-154-159
- Millrose M, Schmidt W, Krickl J, et al. Influence of Malnutrition on Outcome after Hip Fractures in Older Patients. J Pers Med. 2023;13(1):109. doi: 10.3390/jpm13010109
- Han TS, Yeong K, Lisk R, et al. Prevalence and consequences of malnutrition and malnourishment in older individuals admitted to hospital with a hip fracture. Eur J Clin Nutr. 2021;75(4):645–652. doi: 10.1038/s41430-020-00774-5
- Nagai T, Uei H, Nakanishi K. Association Among Geriatric Nutritional Risk Index and Functional Prognosis in Elderly Patients with Osteoporotic Vertebral Compression Fractures. Indian J Orthop. 2021;56(2):338–344. doi: 10.1007/s43465-021-00478-3
- Shapses SA, Riedt CS. Bone, Body Weight, and Weight Reduction: What Are the Concerns? The J Nutr. 2006;136(6):1453–1456. doi: 10.1093/jn/136.6.1453
- Jensen LB, Kollerup G, Quaade F, SØRensen OH. Bone Mineral Changes in Obese Women During a Moderate Weight Loss With and Without Calcium Supplementation. J Bone Miner Res. 2001;16(1):141–147. doi: 10.1359/jbmr.2001.16.1.141
- Calvez J, Poupin N, Chesneau C, et al. Protein intake, calcium balance and health consequences. Eur J Clin Nutr. 2011;66(3):281–295. doi: 10.1038/ejcn.2011.196
- Abelow BJ, Holford TR, Insogna KL. Cross-cultural association between dietary animal protein and hip fracture: A hypothesis. Calcif Tissue Int. 1992;50(1):14–18. doi: 10.1007/bf00297291
- Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Protein Consumption and Bone Fractures in Women. Am J Epidemiol. 1996;143(5):472–479. doi: 10.1093/oxfordjournals.aje.a008767
- Kerstetter JE, O’Brien KO, Caseria DM, et al. The Impact of Dietary Protein on Calcium Absorption and Kinetic Measures of Bone Turnover in Women. J Clin Endocrinol Metab. 2005;90(1):26–31. doi: 10.1210/jc.2004-0179
- Koutsofta I, Mamais I, Chrysostomou S. The effect of protein diets in postmenopausal women with osteoporosis: Systematic review of randomized controlled trials. J Women Aging. 2018;31(2):117–139. doi: 10.1080/08952841.2018.1418822
- Campbell WW, Tang M. Protein Intake, Weight Loss, and Bone Mineral Density in Postmenopausal Women. J Gerontol A Biol Sci Med Sci. 2010;65A(10):1115–1122. doi: 10.1093/gerona/glq083
- Jesudason D, Nordin BC, Keogh J, Clifton P. Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial. Am J Clin Nutr. 2013;98(5):1343–1352. doi: 10.3945/ajcn.113.058586
- Holm L, Olesen JL, Matsumoto K, et al. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women. J Appl Physiol. 2008;105(1):274–281. doi: 10.1152/japplphysiol.00935.2007
- Zhu K, Meng X, Kerr DA, et al. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res. 2011;26(9):2298–2306. doi: 10.1002/jbmr.429
- Sukumar D, Ambia-Sobhan H, Zurfluh R, et al. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: A randomized, controlled trial. J Bone Miner Res. 2011;26(6):1339–1348. doi: 10.1002/jbmr.318
- Zittermann A, Schmidt A, Haardt J, et al. Protein intake and bone health: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Osteoporos Int. 2023;34(8):1335–1353. doi: 10.1007/s00198-023-06709-7
- Yu Y, Li X, Zheng M, et al. The potential benefits and mechanisms of protein nutritional intervention on bone health improvement. Crit Rev Food Sci Nutr. 2023;64(18):6380–6394. doi: 10.1080/10408398.2023.2168250
- Zhang YW, Cao MM, Li YJ, et al. Dietary Protein Intake in Relation to the Risk of Osteoporosis in Middle-Aged and Older Individuals: A Cross-Sectional Study. J Nutr Health Aging. 2022;26(3):252–258. doi: 10.1007/s12603-022-1748-1
- Weaver AA, Tooze JA, Cauley JA, et al. Effect of Dietary Protein Intake on Bone Mineral Density and Fracture Incidence in Older Adults in the Health, Aging, and Body Composition Study. Melzer D, ed. J Gerontol A Biol Sci Med Sci. 2021;76(12):2213–2222. doi: 10.1093/gerona/glab068
- Tsagari A. Dietary protein intake and bone health. J Frailty Sarcopenia Falls. 2020;05(01):1–5. doi: 10.22540/jfsf-05-001
- Camacho PM, Petak SM, Binkley N, et al. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis — 2020 update. Endocrine Practice. 2020;26 (Suppl. 1):1–46. doi: 10.4158/gl-2020-0524suppl
- Gressies C, Gomes F, Schuetz P, et al. ESPEN guideline on nutritional support for polymorbid medical inpatients. Clin Nutr. 2023;42(9):1545–1568. doi: 10.1016/j.clnu.2023.06.023
- Xu B, Guo ZL, Jiang B, et al. Factors affecting sarcopenia in older patients with chronic diseases. Ann Palliat Med. 2022;11(3):972–983. doi: 10.21037/apm-22-201
- Tkacheva ON, Tutelyan VA, Shestopalov AE, et al. Nutritional insufficiency (malnutrition) in older adults. Clinical recommendations. In: Russian Journal of Geriatric Medicine; 2021. doi: 10.37586/2686-8636-1-2021-15-34
- Demay MB, Pittas AG, Bikle DD, et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2024;109(8):1907–1947. doi: 10.1210/clinem/dgae290
- Córdova A, Caballero-García A, Noriega-Gonzalez DC, et al. Nitric-Oxide-Inducing Factors on Vitamin D Changes in Older People Susceptible to Suffer from Sarcopenia. Int J Environ Res Public Health. 2022;19(10):5938–5938. doi: 10.3390/ijerph19105938
- Carmel AS, Shieh A, Bang H, Bockman RS. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporos Int. 2012;23(10):2479–2487. doi: 10.1007/s00198-011-1868-7
- Bischoff-Ferrari HA, Dietrich T, Orav EJohn, Dawson-Hughes B. Positive association between 25-hydroxy vitamin d levels and bone mineral density: a population-based study of younger and older adults. Am J Med. 2004;116(9):634–639. doi: 10.1016/j.amjmed.2003.12.029
- Gregson CL, Armstrong DJ, Bowden J, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2022;17(1):58. doi: 10.1007/s11657-022-01061-5
- LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–2102. doi: 10.1007/s00198-021-05900-y
- Dhaliwal R, Mikhail M, Feuerman M, Aloia JF. The Vitamin D Dose Response in Obesity. Endocr Pract. 2014;20(12):1258–1264. doi: 10.4158/ep13518.or
- Chaney A, Heckman MG, Diehl NN, et al. Effectiveness and outcomes of current practice in treating vitamin D deficiency in patients listed for liver transplantation. Endocr pract. 2015;21(7):761–769. doi: 10.4158/EP14416.OR
- Farahati J, Nagarajah J, Gilman E, et al. Ethnicity, Clothing Style, and Body Mass Index are Significant Predictors of Vitamin D Insufficiency in Germany. Endocr Pract. 2015;21(2):122–127. doi: 10.4158/ep14320.or
- Langsetmo L, Berger C, Kreiger N, et al. Calcium and Vitamin D Intake and Mortality: Results from the Canadian Multicentre Osteoporosis Study (CaMos). J Clin Endocrinol Metab. 2013;98(7):3010–3018. doi: 10.1210/jc.2013-1516
- Uwitonze AM, Razzaque MS. Role of Magnesium in Vitamin D Activation and Function. The J Am Osteopath Assoc. 2018;118(3):181. doi: 10.7556/jaoa.2018.037
- Workinger J, Robert D, Bortz J. Challenges in the Diagnosis of Magnesium Status. Nutrients. 2018;10(9):1202. doi: 10.3390/nu10091202
- DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5(1):e000668. doi: 10.1136/openhrt-2017-000668
- Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009;22(4):235–246. doi: 10.1684/mrh.2009.0187
- van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J Am Med Dir Assoc. 2018;19(1):6–11.e3. doi: 10.1016/j.jamda.2017.05.026
- Ross AC, Manson JE, Abrams SA, et al. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J Clin Endocrinol Metab. 2011;96(1):53–58. doi: 10.1210/jc.2010-2704
- van Dronkelaar C, Fultinga M, Hummel M, et al. Minerals and Sarcopenia in Older Adults: An Updated Systematic Review. J Am Med Dir Assoc. 2023;24(8):1163–1172. doi: 10.1016/j.jamda.2023.05.017
- Peng S, Zhang G, Wang D. Association of selenium intake with bone mineral density and osteoporosis: the national health and nutrition examination survey. Front Endocrinol. 2023;14:1251838. doi: 10.3389/fendo.2023.1251838
- Grili PP, Vidigal CV, Cruz GF, et al. Dietary consumption of selenium inversely associated with osteoporosis in postmenopausal women. Front Nutr. 2022;9. doi: 10.3389/fnut.2022.997414
- Luo Y, Xiang Y, Lu B, et al. Association between dietary selenium intake and the prevalence of osteoporosis and its role in the treatment of glucocorticoid-induced osteoporosis. J Orthop Surg Res. 2023;18(1). doi: 10.1186/s13018-023-04276-5
- Rondanelli M, Peroni G, Gasparri C, et al. Una visión general sobre la correlación entre el zinc en la sangre, la ingesta de zinc, la suplementación de zinc y la densidad mineral ósea en los seres humanos. Acta Ortop Mex. 2021;35(2):142–152. doi: 10.35366/101857
- Fang D, Jiang D, Shi G, Song Y. The association between dietary zinc intake and osteopenia, osteoporosis in patients with rheumatoid arthritis. BMC Musculoskeletal Disorders. 2024;25(1). doi: 10.1186/s12891-024-07768-5
- Ceylan MN, Akdas S, Yazihan N. Is Zinc an Important Trace Element on Bone-Related Diseases and Complications? A Meta-analysis and Systematic Review from Serum Level, Dietary Intake, and Supplementation Aspects. Biol Trace Elem Res. 2020;199(2):535–549. doi: 10.1007/s12011-020-02193-w
- Nakano M, Nakamura Y, Miyazaki A, Takahashi J. Zinc Pharmacotherapy for Elderly Osteoporotic Patients with Zinc Deficiency in a Clinical Setting. Nutrients. 2021;13(6):1814. doi: 10.3390/nu13061814
- Chen H, Zhang Z, Wang Y, et al. Iron status and sarcopenia-related traits: a bi-directional Mendelian randomization study. Sci Rep. 2024;14(1). doi: 10.1038/s41598-024-60059-w
- Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci. 2023;24(8):6891. doi: 10.3390/ijms24086891
- Galchenko A, Gapparova K, Sidorova E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit Rev Food Sci Nutr. 2021;63(7):1–17. doi: 10.1080/10408398.2021.1996330
- Pawlak R. Vitamin B12 status is a risk factor for bone fractures among vegans. Med Hypotheses. 2021;153:110625. doi: 10.1016/j.mehy.2021.110625
- Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin Nutr. 2017;36(1):267–274. doi: 10.1016/j.clnu.2015.11.013
- Mokrysheva NG, Shestakova MV, Ametov AS, et al. Insufficiency/deficiency of vitamin B12 in patients in the endocrinological practice. Diabetes Mellitus. 2024;27(3):314–320. EDN: SPFJJQ doi: 10.14341/dm13181
- Besora-Moreno M, Llauradó E, Valls RM, et al. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin Nutr. 2022;41(10):2308–2324. doi: 10.1016/j.clnu.2022.07.035
- Midttun M, Overgaard K, Zerahn B, et al. Beneficial effects of exercise, testosterone, vitamin D, calcium and protein in older men — A randomized clinical trial. J Cachexia Sarcopenia Muscle. 2024;15(4):1451–1462. doi: 10.1002/jcsm.13498
- Aleksey Danilkin, Olesya Bakumenko, Oliya Fazullina, Smirnov S. Development of the Enteral Mixtures Composition for the Protein-Energy Deficiency Correction. Food Industry. 2023;8(4):25–35. EDN: HVBYBJ doi: 10.29141/2500-1922-2023-8-4-3
- Zeraatkar D, Petrisor B. Cochrane in CORR®. Clin Orthop Relat Res. 2019;477(3):491–493. doi: 10.1097/corr.0000000000000658
- Hill TR, Verlaan S, Biesheuvel E, et al. A Vitamin D, Calcium and Leucine-Enriched Whey Protein Nutritional Supplement Improves Measures of Bone Health in Sarcopenic Non-Malnourished Older Adults: The PROVIDE Study. Calcif Tissue Int. 2019;105(4):383–391. doi: 10.1007/s00223-019-00581-6
- Bauer JM, Mikušová L, Verlaan S, et al. Safety and tolerability of 6-month supplementation with a vitamin D, calcium and leucine-enriched whey protein medical nutrition drink in sarcopenic older adults. Aging Clin Exp Res. 2020;32(8):1501–1514. doi: 10.1007/s40520-020-01519-x
- Cederholm T, Hedström M. Nutritional treatment of bone fracture. Curr Opin Clin Nutr Metab Care. 2005;8(4):377–381. doi: 10.1097/01.mco.0000172576.48772.a8
Supplementary files
