The choice of methods for assessing the metabolic status of a patient in the intensive care unit

Cover Page

Cite item

Full Text

Abstract

Adequate nutritional support for critically ill patients has always been (and still remains) one of the main, complex and not fully resolved problems of modern intensive care, which, unfortunately, often remains without due attention. In everyday practice, in order to adequately correct nutritional deficiency, the resuscitator must, first of all, correctly assess the trophological status of the patient. Currently, there exists a large selection of nutrients and different methods for assessing metabolic status. The paper presents a critical analysis of existing methods for assessing the nutritional status and algorithms for the personalized choice of each of them in a specific clinical situation in critically ill patients.

About the authors

Evgeniy D. Slastnikov

S.P. Botkin City Clinical Hospital

Author for correspondence.
Email: slast08@yandex.ru
ORCID iD: 0000-0003-2843-8672
SPIN-code: 3266-4470
Russian Federation, Moscow

Alexey V. Blasenko

S.P. Botkin City Clinical Hospital; Russian Medical Academy of Continuous Professional Education

Email: dr.vlasenko67@mail.ru
ORCID iD: 0000-0003-4535-2563
SPIN-code: 2618-0810

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

Evgeniy A. Evdokimov

Russian Medical Academy of Continuous Professional Education

Email: ea_evdokimov@mail.ru
SPIN-code: 1296-7365

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Alexander E. Shestopalov

Russian Medical Academy of Continuous Professional Education

Email: ashest@yandex.ru
ORCID iD: 0000-0002-5278-7058
SPIN-code: 7531-6925

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Evgeniy P. Rodionov

S.P. Botkin City Clinical Hospital; Russian Medical Academy of Continuous Professional Education

Email: dr.rodionov@gmail.com
ORCID iD: 0000-0002-3852-8877
SPIN-code: 2248-2175

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Albert G. Koryakin

S.P. Botkin City Clinical Hospital

Email: koriakinalbert@gmail.com
ORCID iD: 0000-0002-5477-4242
SPIN-code: 3163-3151
Russian Federation, Moscow

Ivan S. Klyuev

S.P. Botkin City Clinical Hospital

Email: ivan.kluev11@gmail.com
ORCID iD: 0000-0003-1050-0415
Russian Federation, Moscow

Victoria I. Makovei

Russian Medical Academy of Continuous Professional Education

Email: nica-m-med@yandex.ru
ORCID iD: 0000-0002-7263-0058

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Vladimir V. Erofeev

Russian Medical Academy of Continuous Professional Education

Email: ErofeevVV@rmapo.ru
ORCID iD: 0000-0002-7320-3322
SPIN-code: 4802-4328

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Studley HO. Percentage of weight loss: a basic indicator of surgical risk in patients with chronic peptic ulcer. 1936. Nutr Hosp. 2001;16(4):141–143.
  2. Luft VM, Kostyuchenko AL, Leiderman IN. Handbook of Clinical Nutrition in Intensive Care Medicine. Saint Petersburg, Ekaterinburg: Farm. Info; 2003. (In Russ). EDN: ZDZCQN
  3. Luft VM, Khoroshilov IE. Nutritional support for patients in clinical practice. Saint Petersburg: VMedA; 1997. (In Russ).
  4. Saltanov AI, Obukhova OA, Kadyrova EG. Assessment of nutritional status in anesthesiology and intensive care medicine. Annals of Critical Care. 1996;(4):42–48. (In Russ).
  5. Boyarintsev VV, Evseev MA. Metabolism and nutritional support in surgical patients. Doctor’s manual. Saint Petersburg: Only-Press; 2017. (In Russ). EDN: ODHTQG
  6. Henderson JM. Pathophysiology of the digestive organs. Transl. from English. Moscow: BINOM; 2022. (In Russ). EDN: QLWWVR
  7. Shenkin A. Serum prealbumin: Is it a marker of nutritional status or of risk of malnutrition. Clin Chem. 2006;52(12):2177–2179. doi: 10.1373/clinchem.2006.077412
  8. Fuhrman MP, Charney P, Mueller CM. Hepatic proteins and nutrition assessment. J Am Diet Assoc. 2004;104(8):1258–1264. doi: 10.1016/j.jada.2004.05.213
  9. Elia M, Cummings JH. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur J Clin Nutr. 2007;61 Suppl. 1:40–74. doi: 10.1038/sj.ejcn.1602938
  10. Zil’ber AP. Critical care medicine: common problems. Petrozavodsk: Izdatel’stvo PGU; 1995. (In Russ).
  11. Luft VM. Clinical nutrition of patients in intensive care medicine: a practical guide. Luft VM, Bagnenko SF, editors. Saint Petersburg: Art-Express; 2013. (In Russ).
  12. Kostyukevich OI, Sviridov SV, Rylova AK, et al. Malnutrition: from pathogenesis to current methods for diagnosis and treatment. Terapevticheskii arkhiv. 2017;89(12-2):216–225. EDN: YPOPRP doi: 10.17116/terarkh20178912216-225
  13. Khoroshilov IE. Guidelines for parenteral and enteral nutrition. Saint Petersburg: Normed-Izdat; 2000. (In Russ).
  14. Smirnova GA, Andriyanov AI, Kravchenko EV, Konovalova IA. The selection of optimal methods for determining the perfect body weight for the assessment of the nutritional status. Voprosy pitaniia. 2019;(5):39–44. EDN: MSKCFS doi: 10.24411/0042-8833-2019-10052
  15. Smirnova GA, Kravchenko EV, Konovalova IA. The selection of optimal methods for the determining the nutritional status of soldiers. Bulletin of the Russian Military Medical Academy. 2018;(3(63)): 164–168. EDN: ZCZCBV
  16. Brel NK, Kokov AN, Gruzdeva OV. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obesity and metabolism. 2018;15(4):3–8. EDN: VXHUXR doi: 10.14341/omet9510
  17. Girsh AO, Malkov OA, Khorov EYu, Kurakin VI. Information value of individual indicators of nutritional status in oncological patients. Omsk Scientific Bulletin. 2012;(2):103–106. EDN: PMJVXJ
  18. Ivanov SV, Khoroshilov IE. Nutritional status assessment in undernourished hospital patients. The scientific notes of the Pavlov university. 2011;18(1):63–67. EDN: SNMRWH
  19. Tutel’yan VA, Nikityuk DB. Nutriciology and Clinical Dietetics: A National Guide 2nd ed. Moscow: GEOTAR-Media; 2022. (In Russ).
  20. Barendregt К, Soeters РВ, Allison SP, Kondrup J. Basic concepts in nutrition: Diagnosis of malnutrition — Screening and assessment. Clin Nutr ESPEN. 2008;3(3):121–125. doi: 10.1016/j.eclnm.2008.02.004
  21. Roitberg GE, Strutynskii AV. Internal diseases. Laboratory and instrumental diagnostics: textbook, 6th ed. Moscow: MEDpress-inform; 2021. (In Russ).
  22. Berger MM, Reintam-Blaser A, Calder PC, et al. Monitoring nutrition in the ICU. Clinical Nutrition. 2019;38(2):584–593. doi: 10.1016/j.clnu.2018.07.009
  23. De Waele E, Jonckheer J, Wischmeyer PE. Indirect calorimetry in critical illness: a new standard of care. Curr Opin Crit Care. 2021;27(4):334–343. doi: 10.1097/MCC.0000000000000844
  24. Faisy C, Guerot E, Diehl JL, Labrousse J, Fagon JY. Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr. 2003;78:241–249. doi: 10.1093/ajcn/78.2.241
  25. Bernstein L, Bachman T, Meguid M, et al. Measurement of visceral protein status in assessing protein and energy malnutrition: standard of care. Prealbumin in Nutritional Care Consensus Group. Nutrition. 1995;11(2):169–171.
  26. Casati A, Muttini S, Leggieri C, et al. Rapid turnover proteins in critically ill ICU patients. Negative acute phase proteins or nutritional indicators. Minerva Anestesiol. 1998;64(7-8):345–350.
  27. Devoto G, Gallo F, Marchello C, et al. Prealbumin serum levels as a useful tool in the assessment of malnutrition in hospitalized patients. Clin Chem. 2006;52(12):2281–2285. doi: 10.1373/clinchem.2006.080366
  28. Segadilha NL, Rocha EE, Tanaka LM, et al. Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations. JPEN J Parenter Enteral Nutr. 2017;41(5):776–784. doi: 10.1177/0148607115625609
  29. Harris JA. A Biometric Study of Basal Metabolism in Man. Washington DC: Carnegie Institute; 1919.
  30. Evans DC, Corkins MR, Malone A, et al. ASPEN Malnutrition Committee. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr Clin Pract. 2021;36(1):22–28. doi: 10.1002/ncp.10588
  31. Frankenfield D, Hise M, Malone A, et al. Evidence Analysis Working Group. Prediction of resting metabolic rate in critically ill adult patients: results of a systematic review of the evidence. J Am Diet Assoc. 2007;107(9):1552–1561. doi: 10.1016/j.jada.2007.06.010
  32. Oshima T, Berger MM, De Waele E, et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2016;36(3):651–662. doi: 10.1016/j.clnu.2016.06.010
  33. Weir JB. A new method for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1-2): 1–9. doi: 10.1113/jphysiol.1949.sp004363
  34. White JV, Guenter P, Jensen G, et al. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012;36(3):275–283. doi: 10.1177/0148607112440285
  35. Balasubramanian S, Tran DH, Serra M, et al. Assessing calorie and protein recommendations for survivors of critical illness weaning from prolonged mechanical ventilation — can we find a proper balance. Clin Nutr ESPEN. 2021;45:449–453. doi: 10.1016/j.clnesp.2021.07.001
  36. Shestopalov AE, Popova TS, Yakovlev AA, et al. Intensive care. A national guideline. Concise edition. Moscow: GEOTAR-Media; 2019. (In Russ).
  37. Kuchieva MB, Chaplygina EV. Anatomical parameters of the neck in age and gender aspects. Clinical significance. Volgograd Scientific Medical Journal. 2020;(2):14–17. EDN: JNVFSR
  38. Broca P. General Instructions for Anthropological Research and Observations by P. Broca, Secretary of the Paris Anthropological Society. Bogdanova A, editor. Moscow: Univ. typ.; 1965.
  39. Bekar C, Açıkgöz A, Turkoğlu I, Melekoglu E. Assessment of nutritional status and anthropometric measurement of patient with renal failure. Clinical Nutrition. 2018;37 Suppl. 1:111. doi: 10.1016/j.clnu.2018.06.1423
  40. Blanck HM, Bowman BA, Cooper GR, Myers GL, Miller DT. Laboratory issues: use of nutritional biomarkers. J Nutr. 2003; 133 Suppl. 3:888–894. doi: 10.1093/jn/133.3.888S
  41. Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol. 2011;95(2):149–162. doi: 10.1016/j.pneurobio.2011.07.010
  42. Nikiforova YuG, Tochilo SA, Marochkov AV. Comparative efficiency of informativeness of testing for procalcitonin, s-reactive protein and cholesterol as laboratory markers of sepsis. Messenger of anesthesiology and resuscitation. 2016;13(1):47–52. EDN: VRWBGR doi: 10.21292/2078-5658-2016-13-1-47-52
  43. Demir MV, Tamer A, Cinemre H, et al. Nutritional status and laboratory parameters among internal medicine inpatients. Niger J Clin Pract. 2015;18(6):757–761. doi: 10.4103/1119-3077.158145
  44. Lang PO, Trivalle C, Vogel T, et al. Determination of Cutoff Values for DEXA-Based Body Composition Measurements for Determining Metabolic and Cardiovascular Health. Biores Open Access. 2015;4(1):16–25. doi: 10.1089/biores.2014.0056
  45. Tarusov BN. On the dielectric constant of the muscle. Doklady AN SSSR. 1934;3(5):353–356. (In Russ).
  46. Tarusov BN. Electrical conductivity as a method for determining the viability of tissues. Arhiv biologicheskih nauk. 1938;52(2): 178–181. (In Russ.).
  47. Gaivoronskiy IV, Nichiporuk GI, Gaivoronskiy IN, Nichiporuk NG. Bioimpedansometry as a method of the component bodystructure assessment (review). Vestnik of St Petersburg University. Medicine. 2017;12(4):365–384. EDN: YNSXGC doi: 10.21638/11701/spbu11.2017.406
  48. Nikolaev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG. Bioimpedance human body composition. Moscow: Nauka; 2009. (In Russ).
  49. Bolanowski M, Nilsson BE. Assessment of human body composition using dual-energy x-ray absorptiometry and bioelectrical impedance analysis. Med Sci Monit. 2001;7(5):1029–1033.
  50. Dumler F. Use of bioelectric impedance analysis and dual-energy X-ray absorptiometry for monitoring the nutritional status of dialysis patients. ASAIO J. 1997;43(3):256–260.
  51. Chepel TV, Ladnaya AA. Bioimpedancemetry: achievements and clinical possibilities (literature review). Dal’nevostochnyi meditsinskii zhurnal. 2020;(2):86–97. EDN: QUAUBV doi: 10.35177/1994-5191-2020-2-86-95
  52. Goodman BE. Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ. 2010;34(2):44–53. doi: 10.1152/advan.00094.2009
  53. Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117(9):1765–1785. doi: 10.1016/j.clnu.2020.04.017
  54. Bachrach LK. Dual energy X-ray absorptiometry (DEXA) measurements of bone density and body composition: promise and pitfalls. J Pediatr Endocrinol Metab. 2000;13 Suppl. 2:983–988.
  55. Lyashchenko YuN. Criteria of effectiveness of artificial therapeutic nutrition in surgery. Vestnik khirurgii. 1987;139(10):133–137. (In Russ).
  56. Pierre Singer P, Blaser AR, Berger MM. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clinical Nutrition. 2023;42(9):1671–1689. doi: 10.1016/j.clnu.2023.07.011
  57. Fleck A, Hawker F, Wallace PI, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;325(8432):781–784. doi: 10.1016/S0140-6736(85)91447-3
  58. Haarbo J, Gotfredsen A, Hassager C, Christiansen C. Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clin Physiol. 1991;11(4):331–341.
  59. Brandi LS, Santini L, Bertolini R, et al. Energy expenditure and severity of injury and illness indices in multiple trauma patients. Crit Care Med. 1999;27(12):2684–2689. doi: 10.1097/00003246-199912000-00013
  60. Vincent JL, Russell JA, Jacob M, et al. Albumin administration in the acutely ill: what is new and where next. Crit Care. 2014;18(4): 231–235. doi: 10.1186/cc13991
  61. Mifflin MD, St Jeor ST, Hill LA, et al. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–247. doi: 10.1093/ajcn/51.2.241
  62. Frankenfield DC, Coleman A, Alam S, Cooney RN. Analysis of Estimation Methods for Resting Metabolic Rate in Critically Ill Adults. Journal of Parenteral and Enteral Nutrition. 2008;33(1):27–36. doi: 10.1177/0148607108322399
  63. Maile MD, Sigakis MJ, Stringer KA, Jewell ES, Engoren MC. Impact of the pre-illness lipid profile on sepsis mortality. J Crit Care. 2020;57:197–202. doi: 10.1016/j.jcrc.2020.01.016
  64. Ireton-Jones CS, Turner WW, Liepa GU, Baxter CR. Equations for the estimation of energy expenditures in patients with burns with special reference to ventilatory status. J Burn Care Rehabil. 1992;13(3):330–333. doi: 10.1097/00004630-199205000-00005
  65. Ingenbleek Y, Bernstein L. Plasma Transthyretin as a Biomarker of Lean Body Mass and Catabolic States. Advances in Nutrition. 2015;6(5): 572–580. Erratum in: Adv. Nutr. 2015;6(6):867. doi: 10.3945/an.115.011148
  66. Zusman O, Kagan I, Bendavid I, et al. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin Nutr. 2019;38(3):1206–1210. doi: 10.1016/j.clnu.2018.04.020
  67. Jonckheer J, Demol J, Lanckmans K, et al. MECCIAS trial: Metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Clin Nutr. 2020;39(12):3797–3803. doi: 10.1016/j.clnu.2020.04.017
  68. Wasyluk W, Zwolak A, Jonckheer J, De Waele E, Dąbrowski W. Methodological Aspects of Indirect Calorimetry in Patients with Sepsis-Possibilities and Limitations. Nutrients. 2022;14(5):930–934. doi: 10.3390/nu14050930
  69. Glebova ES, Ivanova-Davidova EV, Amcheslavsky VG. Indirect calorimetry as an objective technique for assessing energy needs of patients in critical states. Russian Journal of Pediatric Surgery. 2019;23(6):329–333. EDN: LWEGXM doi: 10.18821/1560-9510-2019-23-6-329-334
  70. Cooney RN, Frankenfield DC. Determining energy needs in critically ill patients: equations or indirect calorimeters. Curr Opin Crit Care. 2012;18(2):174–177.
  71. Nabavi A, Allami A, QasemiBarqi R. Changes in plasma lipid and in-hospital deaths in patients with sepsis. Med J Islam Repub Iran. 2020;34:45. doi: 10.34171/mjiri.34.45
  72. Raguso CA, Dupertuis YM, Pichard C. The role of visceral proteins in the nutritional assessment of intensive care unit patients. Curr Opin Clin Nutr Metab Care. 2003;6(2):211–216. doi: 10.1097/00075197-200303000-00010
  73. Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respir Care. 2009;54(4):509–521.
  74. Wang X, Wang Y, Ding Z, et al. Relative validity of an indirect calorimetry device for measuring resting energy expenditure and respiratory quotient. Asia Pac J Clin Nutr. 2018;27(1):72–77. doi: 10.6133/apjcn.032017.02
  75. Singer P. Protein metabolism and requirements in the ICU. Clin Nutr ESPEN. 2020;38:3–8. doi: 10.1016/j.clnesp.2020.03.026

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main stages of micronutrient metabolism.

Download (1MB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies