The role of indirect calorimetry in the treatment and rehabilitation of patients in long-term unconsciousness after brain damage

Cover Page

Cite item

Full Text

Abstract

Background. Nutritional support is an important part of the treatment of critically ill patients. However, there are no specific recommendations for patients in a long unconscious state after brain damage to determine their energy needs.

Aim. To determine the role of indirect calorimetry in assessing the energy expenditure of patients in prolonged unconsciousness after brain damage.

Methods. Prospective cohort study included 81 patients with brain damage who were treated in the intensive care unit. All patients with prolonged unconsciousness had stayed in the intensive care unit for more than 30 days. Mean age of patients was 48.4 ± 16.3 years. Men were predominant (58%). Almost all patients had normal body mass index (BMI) (mean 22.8 ± 6.2 kg/m2). The main cause of brain damage was severe traumatic injury (42%). There were also patients with consequences of subarachnoid hemorrhage (35%), stroke (19%) and hypoxic damage (4%).

Results. According to indirect calorimetry, mean energy requirements in patients in prolonged unconsciousness was 25.12 ± 8.8 kcal/kg/day (1595.3 ± 560 kcal/day). Variability of this value was high in this sample (10.6–61.6 kcal/kg/day, 673–3514 kcal/day). According to urine nitrogen loss, mean protein requirement was 0.83 ± 0.46 g/kg/day that was lower than the recommended values for critically ill patients. Variability of data obtained by indirect calorimetry was higher than that of the calculated values despite statistically similar energy requirements of patients. Variability of data obtained by Harris-Benedict equation ranged from 15.4 kcal/kg/day (1023 kcal/day) to 37.3 kcal/kg/day (2065 kcal/day). There was no relationship between energy expenditure and causes of brain damage. Moreover, significant correlation between metabolic rate, urine nitrogen loss and outcomes of disease was also absent.

Conclusion. Indirect calorimetry alone is not enough to prescribe optimal nutritional support in patients with prolonged unconsciousness if function of the gastrointestinal tract and other factors affecting energy expenditure are not considered.

About the authors

Kirill Yu. Krylov

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”; The Russian National Research Medical University named after N.I. Pirogov

Email: krkerk@gmail.com
ORCID iD: 0000-0002-1807-7546

ведущий научный сотрудник лаборатории нутригеномики и нутригенетики; заведующий лабораторией нутригеномики и нутригенетики

Russian Federation, Moscow

Ivan V. Sergeev

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”; Peoples’ Friendship University of Russia

Author for correspondence.
Email: dr.ivansergeev@gmail.com
ORCID iD: 0000-0002-9470-7896

врач анестезиолог-реаниматолог 2-го отделения анестезиологии и реанимации, аспирант кафедры анестезиологии и реанимации медицинского института

Russian Federation, Москва

Alexandra V. Yakovleva

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”

Email: avyakovleva@fnkcrr.ru
ORCID iD: 0000-0001-9903-7257

младший научный сотрудник лаборатории нутригеномики и нутригенетики НИИ реабилитологии

Russian Federation, Moscow

Ruben S. Yagubyan

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”; The Russian National Research Medical University named after N.I. Pirogov

Email: admin@airkafrgmu.ru
ORCID iD: 0000-0003-3273-890X

научный сотрудник лаборатории нутригеномики и нутригенентики НИИ реабилитологии

Russian Federation, Moscow

Alexey A. Yakovlev

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”

Email: blackhandep@gmail.com
ORCID iD: 0000-0002-8482-1249

заместитель руководителя НИИ реабилитологии

Russian Federation, Moscow

Marina V. Petrova

Federal State Budgetary Scientific Institution “Federal Research and Clinical Center for Resuscitation and Rehabilitology”; Peoples’ Friendship University of Russia

Email: mail@petrovamv.ru
ORCID iD: 0000-0003-4272-0957

д.м.н., профессор, заместитель директора по научно-клинической деятельности; заведующая кафедрой анестезиологии и реаниматологии

Russian Federation, Moscow

References

  1. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6−15. doi: 10.1227/NEU.0000000000001432.
  2. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48−79. doi: 10.1016/j.clnu.2018.08.037.
  3. Бахман А.Л. Искусственное питание: справочное руководство по энтеральному и парентеральному питанию / Пер. с англ. под ред. А.Л. Костюченко. — М.: БИНОМ; СПб.: Нев. диалект, 2000. — С. 11−27. [Bakhman AL. Iskusstvennoe pitanie: spravochnoe rukovodstvo po enteral’nomu i parenteral’nomu pitaniiu. Transl. from English ed. by A.L. Kostiuchenko. Moscow: BINOM; St. Petersburg: Nev. Dialekt; 2000. Рр. 11−27. (In Russ).]
  4. Завертайло Л.Л., Мальков О.А., Лейдерман И.Н. Технология метаболического мониторинга и выбор программы нутритивной поддержки у больного в критическом состоянии // Интенсивная терапия. — 2007. — Т. 16. — № 1. — С. 65−77. [Zavertailo LL, Mal’kov OA, Leiderman IN. Tekhnologiia metabolicheskogo monitoringa i vybor programmy nutritivnoi podderzhki u bol’nogo v kriticheskom sostoianii. Intensivnaia terapiia. 2007;16(1):65−77. (In Russ).]
  5. Haugen HA, Chan LN, Li F. Indirect calorimetry a practical guide for clinicians. Nutr Clin Pract. 2007;22(4):377−388. doi: 10.1177/0115426507022004377.
  6. Matarese LE. Indirect calorimetry: technical aspects. J Am Diet Assoc. 1997;97(10 Suppl 2):S154−160. doi: 10.1016/s0002-8223(97)00754-2.
  7. McArthur C. Indirect calorimetry. Respir Care Clin N Am. 1997;3(2):291−307.
  8. McClave SA, Snider HL. Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 1992;7(5):207−221. doi: 10.1177/0115426592007005207.
  9. Xiao G, Xie Q, He Y, et al. Comparing the measured basal metabolic rates in patients with chronic disorders of consciousness to the estimated basal metabolic rate calculated from common predictive equations. Clin Nutr. 2017; 36(5):1397−1402. doi: 10.1016/j.clnu.2016.09.011.
  10. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601−609. doi: 10.1007/s00134-011-2146-z.
  11. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159−211. doi: 10.1177/0148607115621863.
  12. Von Wild K, Gerstenbrand F, Dolce G, et al. Guidelines for quality management of apallic syndrome / vegetative state. Eur J Trauma Emerg Surg. 2007;33(3):268−292. doi: 10.1007/s00068-007-6138-1.
  13. Руководство по клиническому питанию / Под ред. В.М. Луфта, С.Ф. Багненко, Ю.А. Щербука. — СПб.: Санкт-Петербургский НИИ скорой помощи им. И.И. Джанелидзе, 2016. — 426 с. [Rukovodstvo po klinicheskomu pitaniiu. Ed. by V.M. Luft, S.F. Bagnenko, Iu.A. Shcherbuk. St. Petersburg: Sankt-Peterburgskii NII skoroi pomoshchi im. I.I. Dzhanelidze; 2016. 426 р. (In Russ).]
  14. Sobotka L. Basics in clinical nutrition. 3rd ed. Prague: Galen; 2011.
  15. Sercombe R, Dinh YR, Gomis P. Cerebrovascular inflamation following subarachnoid hemorrhage. Jpn J Pharmacol. 2002;88(3):227−249. doi: 10.1254/jjp.88.227.
  16. Bansal V, Costantini T, Kroll L, et al. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma. 2009;26(8):1353−1359. doi: 10.1089/neu.2008-0858.
  17. Olsen AB, Hetz RA, Xue H. Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol Motil. 2013;25(7):593−463. doi: 10.1111/nmo.12121.
  18. Swidsinski A, Loening-Baucke V, Krüger M, et al. Central nervous system and the colonic bioreactor: analysis of colonic microbiota in patients with stroke unravels unknown mechanisms of the host defense after brain injury. Intest Res. 2012;10(4):332−334. doi: 10.5217/ir.2012.10.4.332.
  19. https://doi.org/10.36425/clinnutrit21188

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of patients for reasons of prolonged unconsciousness

Download (371KB)
3. Fig. 2. Type of report received after the end of the study

Download (564KB)
4. Fig. 3. Comparison of energy demand levels obtained by indirect calorimetry and calculated using the Harris – Benedict equation

Download (262KB)
5. Fig. 4. The relationship between the cause of brain damage and resting energy costs

Download (277KB)
6. Fig. 5. Comparison of levels of protein delivered and measured protein needs

Download (258KB)

Copyright (c) 2020 Krylov K.Y., Sergeev I.V., Yakovleva A.V., Yagubyan R.S., Yakovlev A.A., Petrova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies