Nutritional therapy for protein-energy malnutrition in children with sepsis

Cover Page

Cite item

Full Text

Abstract

This review presents meta-analyses on nutrition in patients with critical illness using ASPEN/SCCM (2017), SSC (2012, 2021), ESPNIC (2020), and SSC (2020) pediatric sepsis guidelines. The ESPNIC (2020) guideline, based on new evidence, complements most of the existing ASPEN (2017) guidelines for critical pediatrics. Children’s SSC (2020) did not find direct evidence and sufficient data to develop strong nutritional recommendations for children with sepsis/SS. Many issues remain unresolved, requiring systematic analysis. In the literature search, only a few randomized clinical trials have focused on the assessment and correction of protein-energy malnutrition in pediatric intensive care. Over the past decade, small and large pediatric studies have recommended nutritional therapy. However, given the heterogeneity of children admitted to intensive care units in terms of age, pathology, disease severity, presence of comorbidities, and nutritional status, it is unrealistic to expect that one nutrition strategy applies to all patients requiring intensive care. Therefore, most clinicians emphasize the need for an individualized approach to nutrition support in children, taking into account the pathology, severity, initial nutritional status, and risk–benefit ratio of different nutritional therapies. An extensive search of the literature on the problem did not reveal strong nutritional recommendations for children with sepsis/SS, which dictates the need for future research on the topic and correction of protein-energy malnutrition in children with sepsis/SS.

About the authors

Elmira A. Satvaldieva

Tashkent Pediatric Medical Institute; National Children’s Medical Center

Author for correspondence.
Email: Satvaldieva.el@gmail.com
ORCID iD: 0000-0002-8448-2670
SPIN-code: 9896-8364

MD, Dr. Sci. (Med.), Professor

Uzbekistan, Tashkent; Tashkent

Gulchehra Z. Ashurova

Tashkent Pediatric Medical Institute; National Children’s Medical Center

Email: gulibaur@gmail.com
ORCID iD: 0000-0001-6437-8967
SPIN-code: 7063-0126

MD

Uzbekistan, Tashkent; Tashkent

References

  1. De Souza DC, Machado FR. Epidemiology of Pediatric Septic Shock. J Pediatr Intensive Care. 2019;8(1):3–10. doi: 10.1055/s-0038-1676634
  2. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6(3):223–230. doi: 10.1016/S2213-2600(18)30063-8
  3. Report on the burden of endemic health care-associated infection worldwide. Available from: https://apps.who.int/iris/handle/10665/80135 Accessed: Dec 28, 2022
  4. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  5. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9
  6. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi: 10.1136/bmj.i1585
  7. Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med. 2011;171(15):1322–1331. doi: 10.1001/archinternmed.2011.318
  8. Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637. doi: 10.1097/CCM.0b013e31827e83af
  9. Gelfand BR, editor. Sepsis: classification, clinical diagnostic concept and treatment. 4th ed. Moscow: Meditsinskoye informatsionnoye agentstvo; 2017. 408 p. (In Russ).
  10. Mehta NM, Bechard LJ, Zurakowski D, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206. doi: 10.3945/ajcn.114.104893
  11. Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J Parenter Enteral Nutr. 2014;38(4):459–466. doi: 10.1177/0148607113517903
  12. Selivanova AV. Hormonal and metabolic changes in critically ill patients. Clinical Laboratory Diagnostics. 2012;(11):13–17. (In Russ).
  13. Bengmark S. Nutrition of the critically ill — a 21st-century perspective. Nutrients. 2013;5(1):162–207. doi: 10.3390/nu5010162
  14. Nespoli L, Coppola S, Gianotti L. The role of the enteral route and the composition of feeds in the nutritional support of malnourished surgical patients. Nutrients. 2012;4(9):1230–1236. doi: 10.3390/nu4091230
  15. Hur H, Kim SG, Shim JH, et al. Effect of early oral feeding after gastric cancer surgery: a result of randomized clinical trial. Surgery. 2011;149(4):561–568. doi: 10.1016/j.surg.2010.10.003
  16. Sartelli M, Catena F, Ansaloni L, et al. Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. World J Emerg Surg. 2012;7(1):36. doi: 10.1186/1749-7922-7-36
  17. Doig GS, Simpson F, Sweetman EA, et al.; Early PN Investigators of the ANZICS Clinical Trials Group. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–2138. doi: 10.1001/jama.2013.5124
  18. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med. 2020;21(2):e52–e106. doi: 10.1097/PCC.0000000000002198
  19. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47(11):1181–1247. doi: 10.1007/s00134-021-06506-y
  20. Kudsk KA. Current aspects of mucosal immunology and its influence by nutrition. Am J Surg. 2002;183(4):390–398. doi: 10.1016/s0002-9610(02)00821-8
  21. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–315. doi: 10.1177/0884533609335176
  22. Reignier J, Boisramé-Helms J, Brisard L, et al; NUTRIREA-2 Trial Investigators; Clinical Research in Intensive Care and Sepsis (CRICS) group. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391(10116): 133–143. doi: 10.1016/S0140-6736(17)32146-3
  23. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–742. doi: 10.1177/0148607117711387
  24. Jotterand Chaparro C, Laure Depeyre J, Longchamp D, et al. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin Nutr. 2016;35(2):460–467. doi: 10.1016/j.clnu.2015.03.015
  25. Wong JJ, Han WM, Sultana R, et al. Nutrition Delivery Affects Outcomes in Pediatric Acute Respiratory Distress Syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):1007–1013. doi: 10.1177/0148607116637937
  26. Prakash V, Parameswaran N, Biswal N. Early versus late enteral feeding in critically ill children: a randomized controlled trial. Intensive Care Med. 2016;42(3):481–482. doi: 10.1007/s00134-015-4176-4
  27. Abdul Manaf Z, Kassim N, Hamzaid NH, Razali NH. Delivery of enteral nutrition for critically ill children. Nutr Diet. 2013;70:120–125. doi: 10.1111/1747-0080.12007
  28. Mikhailov TA, Gertz SJ, Kuhn EM, et al. Early Enteral Nutrition Is Associated With Significantly Lower Hospital Charges in Critically Ill Children. JPEN J Parenter Enteral Nutr. 2018;42(5):920–925. doi: 10.1002/jpen.1025
  29. Carpenito KR, Prusinski R, Kirchner K, et al. Results of a Feeding Protocol in Patients Undergoing the Hybrid Procedure. Pediatr Cardiol. 2016;37(5):852–859. doi: 10.1007/s00246-016-1359-x. Erratum in: Pediatr Cardiol. 2016;37(5):991.
  30. Lekmanov AU, Erpuleva YuV. Early enteral nutrition in critical conditions. Bulletin of Intensive Therapy. 2012;(1):65–67. (In Russ).
  31. Briassoulis G, Filippou O, Hatzi E, et al. Early enteral administration of immunonutrition in critically ill children: results of a blinded randomized controlled clinical trial. Nutrition. 2005; 21(7-8):799–807. doi: 10.1016/j.nut.2004.12.006
  32. Briassoulis G, Filippou O, Kanariou M, Hatzis T. Comparative effects of early randomized immune or non-immune-enhancing enteral nutrition on cytokine production in children with septic shock. Intensive Care Med. 2005;31(6):851–858. doi: 10.1007/s00134-005-2631-3
  33. Briassoulis G, Filippou O, Kanariou M, Papassotiriou I, Hatzis T. Temporal nutritional and inflammatory changes in children with severe head injury fed a regular or an immune-enhancing diet: A randomized, controlled trial. Pediatr Crit Care Med. 2006;7(1): 56–62. doi: 10.1097/01.pcc.0000192339.44871.26
  34. Carcillo JA, Dean JM, Holubkov R, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN). The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr Crit Care Med. 2012;13(2):165–173. doi: 10.1097/PCC.0b013e31823896ae
  35. Larsen BM, Field CJ, Leong AY, et al. Pretreatment with an intravenous lipid emulsion increases plasma eicosapentanoic acid and downregulates leukotriene b4, procalcitonin, and lymphocyte concentrations after open heart surgery in infants. JPEN J Parenter Enteral Nutr. 2015;39(2):171–179. doi: 10.1177/0148607113505326
  36. Larsen BM, Goonewardene LA, Joffe AR, et al. Pre-treatment with an intravenous lipid emulsion containing fish oil (eicosapentaenoic and docosahexaenoic acid) decreases inflammatory markers after open-heart surgery in infants: a randomized, controlled trial. Clin Nutr. 2012;31(3):322–329. doi: 10.1016/j.clnu.2011.11.006
  37. Erpuleva YuV. Glutamine solution in the parenteral nutrition for children with critical conditions. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2021;11(4):555–560. doi: 10.17816/psaic1012
  38. Bober-Olesińska K, Kornacka MK. Ocena wpływu suplementacji glutamina zywienia pozajelitowego na czestość wystepowania martwiczego zapalenia jelit, szpitalnej sepsy oraz czas leczenia w szpitalu u noworodków z bardzo mała urodzeniowa masa ciała. Med Wieku Rozwoj. 2005;9(3 Pt 1):325–333.
  39. Poindexter BB, Ehrenkranz RA, Stoll BJ, et al.; National Institute of Child Health and Human Development Neonatal Research Network. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics. 2004;113(5):1209–1215. doi: 10.1542/peds.113.5.1209
  40. Briassouli E, Briassoulis G. Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies. Clin Dev Immunol. 2012:749189. doi: 10.1155/2012/749189
  41. Holecek M. Side effects of long-term glutamine supplementation. JPEN J Parenter Enteral Nutr. 2013;37(5):607–616. doi: 10.1177/0148607112460682
  42. Griffiths RD, Allen KD, Andrews FJ, Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002;18(7-8):546–552. doi: 10.1016/s0899-9007(02)00817-1
  43. Lekmanov AU, Erpuleva YuV, Zolkina IV. Efficiency of using glutamine solution in children with severe burn and concomitant trauma in the intensive care unit. Bulletin of Intensive Care. 2013;(1):49–51. (In Russ).
  44. Tume LN, Valla FV, Joosten K, et al. Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med. 2020;46(3):411–425. doi: 10.1007/s00134-019-05922-5
  45. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl. 1):10–67. doi: 10.1007/s00134-019-05878-6
  46. Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals*. Pediatr Crit Care Med. 2014;15(7):583–589. doi: 10.1097/PCC.0000000000000179
  47. Panchal AK, Manzi J, Connolly S, et al. Safety of Enteral Feedings in Critically Ill Children Receiving Vasoactive Agents. JPEN J Parenter Enteral Nutr. 2016;40(2):236–241. doi: 10.1177/0148607114546533
  48. King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–338. doi: 10.1177/0148607104028005334
  49. Lekmanov AU, Mironov PI, Aleksandrovich YuS, et al. Sepsis in children: federal clinical guideline (draft). Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2021;11(2):241–292. doi: 10.17816/psaic969
  50. Mehta NM. Feeding the gut during critical illness — it is about time. JPEN J Parenter Enteral Nutr. 2014;38(4):410–414. doi: 10.1177/0148607114522489

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies