Selection methods for probiotic microorganisms with high adhesive properties

封面

如何引用文章

全文:

详细

BACKGROUND: The ability to adhere to the intestinal epithelium is a classic criterion for the selection of potential probiotic bacteria, which can lead to temporary colonization, which will promote immunomodulatory effects, as well as stimulate the intestinal barrier and metabolic functions.

AIM: To develop a comprehensive method of selection of highly active probiotic microorganisms capable of proliferation and complementation of the autochthonous intestinal microflora of an individual.

MATERIALS AND METHODS: In this research paper, several methods of selection of probiotic microorganisms are considered in order to determine the most useful and proliferative strains for subsequent use in clinical practice in the correction of metabolic disorders and relief of inflammatory processes of the gastrointestinal tract. The degree of adhesion of bacterial strains of probiotics was determined according to the standard methods described in the Guidelines of MUC 4.2.2602–10. When determining the adhesive activity of lactic acid bacteria on cell cultures, the cell culture was grown on a six-hole plate before the formation of a monolayer.

RESULTS: A scheme for selecting promising probiotics by the level of adhesive activity of strains belonging to the most commonly used types of microbial cultures in clinical practice has been developed. The indicators of the degree of adhesion of lactic acid bacteria in the range from 2.8 to 5.1, and the yeast probiotic strain S. cerevisiae var were determined.boulardii at 1.9. When assessing the adhesion of probiotic bacteria in vitro using mucin adsorbed on abiotic surfaces and carcinogenic human cell lines such as CaСo-2 and HT-29, NCM460, lactic acid bacteria also showed high results.

CONCLUSION: All strains of lactic acid bacteria used showed high or average adhesion to sheep blood erythrocyte cells, which confirms the probiotic potential of these types of cultures and complies with the requirements of regulatory legal acts of the Russian Federation. The low degree of adhesion of the yeast culture indicates the rapid passage of yeast cells through the gastrointestinal tract and the inability of the strain culture to affect the composition of the autochthonous microflora of humans and animals. For a more detailed determination of the adhesive properties of probiotic culture, it is possible to use modern techniques using cell lines, including epithelial cells of human colon adenocarcinoma CaСo-2.

作者简介

Marya Kanochkina

Russian Biotechnological University; Research Organization “Microbial Nutrients Immunocorrectors” LLC

Email: kanoch@yandex.ru
ORCID iD: 0000-0001-6077-5957
SPIN 代码: 2584-6474

Cand. Sci. (Tech)

俄罗斯联邦, 11 Volokolamsk Highway, 125080 Moscow; Moscow

Ivan Fomenko

Russian Biotechnological University

Email: fomencoia@mgupp.ru
ORCID iD: 0000-0003-2478-1705
SPIN 代码: 5861-2838

Cand. Sci. (Tech)

俄罗斯联邦, 11 Volokolamsk Highway, 125080 Moscow

Irina Chernukha

Federal Research Center for Food Systems

Email: imcher@inbox.ru
ORCID iD: 0000-0003-4298-0927
SPIN 代码: 3423-3754

Doc. Sci. (Tech)

俄罗斯联邦, Moscow

Natalia Mashentseva

Russian Biotechnological University

编辑信件的主要联系方式.
Email: natali-mng@yandex.ru
ORCID iD: 0000-0002-9287-0585
SPIN 代码: 9791-5806
Scopus 作者 ID: 57060483400
Researcher ID: R-8014-2016
https://mgupp.ru/obuchayushchimsya/instituty-i-kafedry/teacher.php?CODE=27797

Doc. Sci. (Tech), Professor

俄罗斯联邦, 11 Volokolamsk Highway, 125080 Moscow

参考

  1. Rush K, Rush F. Mikrobiologicheskaya terapiya [translated from German]. Moscow: Arnebiya; 2003. 160 p. (In Russ).
  2. Siciliano RA, Mazzeo MF. Molecular mechanisms of probiotic action: A proteomic perspective // Curr Opin Microbiol. 2012. Vol. 15, N 3. P. 390–396. doi: 10.1016/j.mib.2012.03.006
  3. Madigan MT, Martinko JM, Dunlap PV, Clark DP. Bacteria: Gram-positive and other bacteria. In: Madigan M.T., Martinko J.M., Dunlap P.V., Clark D.P., editors. Brock: Biology of Microorganisms. San Francisco: Pearson Benjamin Cummings; 2009. P. 446–486.
  4. Sanders ME. How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Funct Food Rev. 2009;1:3–12.
  5. Azcarate-Peril MQA, Altermann E, Goh YJ, et al. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol. 2008;74(15):4610–4625. doi: 10.1128/AEM.00054-08
  6. Hill C, Guarner F, Reid G, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66
  7. Slover CM, Danziger L. Lactobacillus: A review. Clin Microbiol Newsl. 2008;30:23–27.
  8. Muyyarikkandy MS, Amalaradjou MA. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei attenuate Salmonella enteritidis, Salmonella Heidelberg and Salmonella typhimurium colonization and virulence gene expression in vitro. Int J Mol Sci. 2017;18(11):2381. doi: 10.3390/ijms18112381
  9. Tan Y, Leonhard M, Moser D, Schneider-Stickler B. Inhibition activity of Lactobacilli supernatant againstfungal-bacterial multispecies biofilm on silicone. Microb Pathog. 2017;113:197–201. doi: 10.1016/j.micpath.2017.10.051
  10. Fukuda K. Is it feasible to control pathogen infection by competitive binding of probiotics to the host? Virulence. 2017; 8(8):1502–1505. doi: 10.1080/21505594.2017.1382798
  11. Sánchez B, López P, González-Rodrígez I, et al. A flagellin-producing Lactococcus strain: Interaction with mucin and enteropathogens. FEMS Microbiol Lett. 2011;318(2):101–107. doi: 10.1111/j.1574-6968.2011.02244.x
  12. Son S-H, Jeon H-L, Yang S-J, Lee N-K, Paik H-D. In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb Pathog. 2017;112:135–141. doi: 10.1016/j.micpath.2017.09.053
  13. Buntin N, de Vos WM., Hongpattarakare T. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol Biotechnol. 2017;101(20):7663–7674. doi: 10.1007/s00253-017-8482-3
  14. Lehri B, Seddon AM, Karlyshev AV. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infectionsю Virulence. 2017;8(8):1753–1760. doi: 10.1080/21505594.2017.1362533
  15. Deplancke B, Gaskins HR. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–1141S. doi: 10.1093/ajcn/73.6.1131S
  16. Johnson BR, O’Flaherty S, Goh YJ, et al. The S-layer associated serine protease homologue PrtX impacts cell surface-mediated microbe-host interactions of Lactobacillus acidophilus NCFM. Front Microbiol. 2017;8:1185. doi: 10.3389/fmicb.2017.01185
  17. Johnson B, Selle K, O’Flaherty S, Goh YJ, Klaenhammer T. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology. 2013;159(11): 2269–2282. doi: 10.1099/mic.0.070755-0
  18. Amenyogbe N, Kollmann TR, Ben-Othman R. Early-life host-microbiome interface: The key frontier for immune development. Front Pediatr. 2017;5:111. doi: 10.3389/fped.2017.00111
  19. Park W. Gut microbiomes and their metabolites shape human and animal health. J Microbiol. 2018;56(3):151–153. doi: 10.1007/s12275-018-0577-8
  20. Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11(2–3):164–170. doi: 10.1016/J.COCIS.2005.11.001
  21. Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011;3(5):613–636. doi: 10.3390/nu3050613
  22. Etzold S, Juge N. Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol. 2014;28:23–31. doi: 10.1016/j.sbi.2014.07.002
  23. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015;6:81. doi: 10.3389/fgene.2015.00081
  24. Van de Guchte M, Chaze T, Jan G, Mistou M.-Y. Properties of probiotic bacteria explored by proteomic approaches. Curr Opin Microbiol. 2012;15(3):381–389. doi: 10.1016/j.mib.2012.04.003
  25. Bentley-Hewitt KL, Narbad A, Majsak-Newman G, Philo MR, Lund EK. Lactobacilli survival and adhesion to colonic epithelial cell lines is dependent on long chain fatty acid exposure. Eur J Lipid Sci Technol. 2017;119(11):1700062.
  26. Gibson GR, Scott KP, Rastall RA, et al. Dietary prebiotics: Current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7(1):1–19. doi: 10.1002/ejlt.201700062
  27. Mays ZJS, Chappell TC, Nair NU. Quantifying and Engineering Mucus Adhesion of Probiotics. ACS Synth Biol. 2020;9(2):356–367. doi: 10.1021/acssynbio.9b00356
  28. Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019;103(16):6463–6472. doi: 10.1007/s00253-019-09978-7
  29. Wang M, Liu P, Kong L, Xu N, Lei H. Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action. Food Chem Toxicol. 2021;149:112049. doi: 10.1016/j.fct.2021.112049
  30. Patent RU № 2 501 861 C1. Mashentseva N.G., Nguen T.M.K. Sposob opredeleniya adgezivnykh svoistv bakterii roda Enterococcus s pomoshch’yu kletochnoi linii CaCo-2. Available from: https://yandex.ru/patents/doc/RU2501861C1_20131220 (In Russ).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».