Modern aspects of infusion therapy: review

Cover Page

Cite item

Full Text

Abstract

The infusion therapy is a routine procedure of the nowadays perioperative period and critical patient treatment. But there are controversial questions about the quantity, quality, start and duration of infusion therapy, which are under discussion. Modern infusion therapy includes intravenous administration of crystalloid solutions and more rarely colloid solutions. The type, amount and rate of infusion fluid depends on the indication for infusion therapy and the specific requirements of the patient. Nowadays colloidal solutions have limited indications. Crystalloid solutions are used for infusion therapy of patients with hypovolemia or dehydration, correction of free water deficiency, correction of electrolyte disorders, replenishment of ongoing fluid losses and replacement for patients who unable to drink water orally. All patients should be monitored with combination of clinical parameters and laboratory tests. Therapeutic endpoints should be determined. The moment these endpoints are achieved fluid therapy should be appropriately de-escalated in order to avoid overhydration.

About the authors

Elena Yu. Khalikova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: khalikovaeu@mail.ru
ORCID iD: 0000-0001-8661-9418
SPIN-code: 5037-0314

MD, Cand. Sci (Med), Assistant Professor

Russian Federation, 8/2, st. Trubetskaya, Moscow, 119991

Elizaveta N. Zolotova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: lz.zolotova@gmail.com
ORCID iD: 0000-0002-1608-6131

MD, Cand. Sci (Med)

Russian Federation, 8/2, st. Trubetskaya, Moscow, 119991

Zahar D. Shtanev

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: shtanev_zahar@mail.ru
ORCID iD: 0000-0002-9837-5550

4th year student

Russian Federation, 8/2, st. Trubetskaya, Moscow, 119991

References

  1. Rewa O, Bagshaw SM. Principles of Fluid Management. Crit Care Clin. 2015;31(4):785–801. doi: 10.1016/j.ccc.2015.06.012
  2. Finfer S, Myburgh J, Bellomo R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol. 2018;14(9):541–557. doi: 10.1038/s41581-018-0044-0
  3. Vincent JL, Ince C, Bakker J. Clinical review: Circulatory shock — an update: a tribute to Professor Max Harry Weil. Crit Care. 2012;16(6):239. doi: 10.1186/cc11510
  4. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–394. doi: 10.1093/bja/aer515
  5. Sokologorskiy SV. Glycocalyx — birth of a new clinical paradigm. Russian Journal of Anaesthesiology and Reanimatology. 2018;(4):22-29. (In Russ.) doi: 10.17116/anaesthesiology201804122
  6. Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock. 2016;45(3):259–270. doi: 10.1097/SHK.0000000000000473
  7. Aksu U, Bezemer R, Yavuz B, et al. Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation. 2012;83(6):767–773. doi: 10.1016/j.resuscitation.2011.11.022
  8. Van Regenmortel N, Jorens PG, Malbrain ML. Fluid management before, during and after elective surgery. Curr Opin Crit Care. 2014;20(4):390–395. doi: 10.1097/MCC.0000000000000113
  9. Padhi S, Bullock I, Li L, et al. Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ. 2013;347:f7073. doi: 10.1136/bmj.f7073
  10. Navarro LH, Bloomstone JA, Auler JO Jr, et al. Perioperative fluid therapy: a statement from the international Fluid Optimization Group. Perioperative Medicine. 2015;10(4):3. doi: 10.1186/s13741-015-0014-z
  11. Langer T, Limuti R, Tommasino C, et al. Intravenous fluid therapy for hospitalized and critically ill children: rationale, available drugs and possible side effects. Anaesthesiol Intensive Ther. 2018;50(1): 49–58. doi: 10.5603/AIT.a2017.0058
  12. Malbrain MLNG, Van Regenmortel N, Saugel B, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66. doi: 10.1186/s13613-018-0402-x
  13. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–1251. doi: 10.1056/NEJMra1208627
  14. Van Regenmortel N, De Weerdt T, Van Craenenbroeck AH, et al. Effect of isotonic versus hypotonic maintenance fluid therapy on urine output, fluid balance, and electrolyte homeostasis: a crossover study in fasting adult volunteers. Br J Anaesth. 2017;118(6):892–900. doi: 10.1093/bja/aex118
  15. Moritz ML, Ayus JC. Maintenance Intravenous Fluids in Acutely Ill Patients. N Engl J Med. 2015;373(14):1350–1360. doi: 10.1056/NEJMra1412877
  16. Van Regenmortel N, Verbrugghe W, Roelant E, et al. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population. Intensive Care Med. 2018;44(4):409–417. doi: 10.1007/s00134-018-5147-3
  17. Marik PE, Linde–Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–632. doi: 10.1007/s00134-016-4675-y
  18. Cordemans C, De Laet I, Van Regenmortel N, et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care. 2012;2(Suppl 1):S15. doi: 10.1186/2110-5820-2-S1-S15
  19. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726-1734. doi: 10.1056/NEJMra1208943
  20. Neymark MI, Zhukov AS. Improvement of preoperative infusion therapy in patients with acute large bowel obstruction. Russian Journal of Anaesthesiology and Reanimatology. 2022;(2):54–59. (In Russ.) doi: 10.17116/anaesthesiology202202154
  21. Malbrain MLNG, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10(1):64. doi: 10.1186/s13613-020-00679-3
  22. Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care: the FENICE study: A global inception cohort study. Intensive Care Med. 2015;41(9):1529–1537. doi: 10.1007/s00134-015-3850-x
  23. Bennett VA, Vidouris A, Cecconi M. Effects of Fluids on the Macro- and Microcirculations. Crit Care. 2018;22(1):74. doi: 10.1186/s13054-018-1993-1
  24. Bobovnik SV, Gorobets ES, Zabolotskikh IB, et al. Perioperative fluid therapy in adults. Russian Journal of Anaesthesiology and Reanimatology. 2021;(4):17–33. (In Russ.) doi: 10.17116/anaesthesiology20210417
  25. Hansen PB, Jensen BL, Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension. 1998;32(6):1066–1070. doi: 10.1161/01.hyp.32.6.1066
  26. Pfortmueller CA, Fleischmann E. Acetate-buffered crystalloid fluids: Current knowledge, a systematic review. J Crit Care. 2016;35:96–104. doi: 10.1016/j.jcrc.2016.05.006
  27. Langer T, Santini A, Scotti E, et al. Intravenous balanced solutions: from physiology to clinical evidence. Anaesthesiol Intensive Ther. 2015;47 Spec No:s78–88. doi: 10.5603/AIT.a2015.0079
  28. Langer T, Scotti E, Carlesso E, et al. Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: interdependence between partial pressure of carbon dioxide and strong ion difference. J Crit Care. 2015;30(1):2–6. doi: 10.1016/j.jcrc.2014.09.013
  29. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med. 2002;30(1):157–160. doi: 10.1097/00003246-200201000-00022
  30. Ushkalova EA, Zyryanov SK, Zatolochina KE, Butranova OI. Infusion fluids: a clinical pharmacologist’s view. Russian Journal of Anaesthesiology and Reanimatology. 2021;(6):100–106. (In Russ) doi: 10.17116/anaesthesiology2021061100
  31. Kuca T, Butler MB, Erdogan M, Green RS. A comparison of balanced and unbalanced crystalloid solutions in surgery patient outcomes. Anaesth Crit Care Pain Med. 2017;36(6):371–376. doi: 10.1016/j.accpm.2016.10.001
  32. Koeppen BM, Stanton BA. Physiology of Body Fluids, Editor(s): Renal Physiology (5th Edition), Mosby, 2013.
  33. Zazzeron L, Gattinoni L, Caironi P. Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Curr Opin Crit Care. 2016;22(5):428–436. doi: 10.1097/MCC.0000000000000341
  34. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–1421. doi: 10.1056/NEJMoa1305727
  35. SAFE Study Investigators; Finfer S, McEvoy S, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96. doi: 10.1007/s00134-010-2039-6
  36. Lewis SR, Pritchard MW, Evans DJ, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018;8(8):CD000567. doi: 10.1002/14651858.CD000567.pub7
  37. Frenette AJ, Bouchard J, Bernier P, et al. Albumin administration is associated with acute kidney injury in cardiac surgery: a propensity score analysis. Crit Care. 2014;18(6):602. doi: 10.1186/s13054-014-0602-1
  38. Guidet B, Ghout I, Ropers J, Aegerter P. Economic model of albumin infusion in septic shock: The EMAISS study. Acta Anaesthesiol Scand. 2020;64(6):781–788. doi: 10.1111/aas.13559
  39. O’Malley CMN, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg. 2005;100(5):1518–1524. doi: 10.1213/01.ANE.0000150939.28904.81
  40. Khajavi MR, Etezadi F, Moharari RS, et al. Effects of normal saline vs. lactated ringer’s during renal transplantation. Ren Fail. 2008;30(5):535–539. doi: 10.1080/08860220802064770
  41. Raiman M, Mitchell CG, Biccard BM, Rodseth RN. Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: A systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(1):42–48. doi: 10.1097/EJA.0000000000000328
  42. Uz Z, Ince C, Guerci P, et al. Recruitment of sublingual microcirculation using handheld incident dark field imaging as a routine measurement tool during the postoperative de-escalation phase-a pilot study in post ICU cardiac surgery patients. Perioper Med (Lond). 2018;7:18. doi: 10.1186/s13741-018-0091-x
  43. Jaber S, Paugam C, Futier E, et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet. 2018;392(10141):31–40. doi: 10.1016/S0140-6736(18)31080-8
  44. Babayants AV, Ignatenko OV, Zinina EP, Kaledina IV. Modern views on infusion of crystalloids in intensive care. Russian Journal of Anaesthesiology and Reanimatology. 2021;(5):49–53. (In Russ) doi: 10.17116/anaesthesiology202105149
  45. Jung B, Rimmele T, Le Goff C, et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care. 2011;15(5):R238. doi: 10.1186/cc10487
  46. Brandstrup B, Tønnesen H, Beier–Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–648. doi: 10.1097/01.sla.0000094387.50865.23
  47. Thacker JK, Mountford WK, Ernst FR, et al. Perioperative Fluid Utilization Variability and Association With Outcomes: Considerations for Enhanced Recovery Efforts in Sample US Surgical Populations. Ann Surg. 2016;263(3):502–510. doi: 10.1097/SLA.0000000000001402
  48. Silva JM Jr, de Oliveira AM, Nogueira FA, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care. 2013;17(6):R288. doi: 10.1186/cc13151
  49. Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305
  50. Gustafsson UO, Scott MJ, Hubner M, et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J Surg. 2019;43(3):659–695. doi: 10.1007/s00268-018-4844-y
  51. Phan TD, Uda Y, Peyton PJ, et al. Effect of fluid strategy on stroke volume, cardiac output, and fluid responsiveness in adult patients undergoing major abdominal surgery: a sub-study of the Restrictive versus Liberal Fluid Therapy in Major Abdominal Surgery (RELIEF) trial. Br J Anaesth. 2021;126(4):818–825. doi: 10.1016/j.bja.2021.01.011
  52. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19(1):251. doi: 10.1186/s13054-015-0970-1
  53. De Oliveira FS, Freitas FG, Ferreira EM, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe sepsis and septic shock. J Crit Care. 2015;30(1):97–101. doi: 10.1016/j.jcrc.2014.09.002
  54. Silva JM Jr, de Oliveira AM, Nogueira FA, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care. 2013;17(6):R288. doi: 10.1186/cc13151
  55. Marik PE, Linde–Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–632. doi: 10.1007/s00134-016-4675-y
  56. Cordemans C, De Laet I, Van Regenmortel N, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl. 1):S1. doi: 10.1186/2110-5820-2-S1-S1
  57. Cordemans C, De Laet I, Van Regenmortel N, et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care. 2012;2(Suppl. 1):S15. doi: 10.1186/2110-5820-2-S1-S15
  58. Dabrowski W, Kotlinska-Hasiec E, Schneditz D, et al. Continuous veno-venous hemofiltration to adjust fluid volume excess in septic shock patients reduces intra-abdominal pressure. Clin Nephrol. 2014;82(1):41–50. doi: 10.5414/CN108015.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».