Novel approaches to optimize nutrition in the elderly patients

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The current dietary advice for the elderly is not in line with contemporary understanding of the effects that nutrition produces on the universal mechanisms of age-related diseases.

AIM: This review is designed to consider modern concepts on the impact of nutrition on the development of age-related diseases and compare them with the current dietary advice for the elderly, with special focus on prevention of frailty and sarcopenia, the key factors of longevity and health quality.

METHODS: Search in Google Scholar and PubMed for reviews and clinical trials using the keywords nutrition, frailty, and sarcopenia.

RESULTS: Frailty is affected by several biopsychosocial factors, with nutrition having the paramount role. It dominates the onset and progression of the key mechanisms of accelerated aging: most importantly, chronic systemic inflammation, insulin resistance, and gut dysbiosis. There is strong evidence that frailty is promoted by malnutrition (insufficiency of energy and nutrients), obesity (insulin resistance), protein deficit, high dietary inflammatory index, easily digested carbohydrates (including fructose and starch), highly processed food, and trans fats and indirectly by gluten. Frailty and sarcopenia can be prevented through the consumption of high-quality (animal) protein, vegetables and fruit (the source of dietary fiber, vitamins, minerals, and phytonutrients), fats, nutrients with antioxidant properties (including vitamins A and E, zinc, selenium, and omega-3 fatty acids), correction of vitamin D status, support of gut microbial diversity, correction of hyperinsulinemia, and increased intestinal permeability.

CONCLUSION: The dietary advice for elderly patients requires revision in line with the contemporary understanding of mechanisms behind age-related diseases and the recent evidence base. This review covers the basics of nutrition essential to prevent frailty and sarcopenia.

About the authors

Andrey V. Martyushev-Poklad

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
Email: avmp2007@gmail.com
ORCID iD: 0000-0002-1193-1287
SPIN-code: 3505-7526
Scopus Author ID: 8278501900
ResearcherId: AAD-2072-2022

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Dmitry S. Yankevich

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: yanson_d@mail.ru
ORCID iD: 0000-0001-5143-7366
SPIN-code: 6506-8058
Scopus Author ID: 57192693303
ResearcherId: AAG-1392-2020

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Marina V. Petrova

ederal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: mail@petrovamv.ru
ORCID iD: 0000-0003-4272-0957
SPIN-code: 9132-4190
Scopus Author ID: 57191543337
ResearcherId: P-1259-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Nataliya G. Savitskaya

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Email: elirom@mail.ru
ORCID iD: 0000-0001-8674-1632
SPIN-code: 1459-6085
Scopus Author ID: 35773664800
ResearcherId: AAH-4702-2021

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Reaven G. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607. doi: 10.2337/diab.37.12.1595
  2. Crofts C, Zinn C, Wheldon M, Schofield G. Hyperinsulinemia: A unifying theory of chronic disease? Diabesity. 2015;1(4):34–43. doi: 10.15562/diabesity.2015.19
  3. Janssen J. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int J Mol Sci. 2021;22(15):7797. doi: 10.3390/ijms22157797
  4. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12): 1822–1832. doi: 10.1038/s41591-019-0675-0
  5. Haas RH. Mitochondrial Dysfunction in aging and diseases of aging. Biology (Basel). 2019;8(2):48. doi: 10.3390/biology8020048
  6. De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food allergies and ageing. Int J Mol Sci. 2019;20(22):5580. doi: 10.3390/ijms20225580
  7. Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5(1):80. doi: 10.1186/s40168-017-0296-0
  8. Kim S, Jazwinski SM. The gut microbiota and healthy aging: A mini-review. Gerontology. 2018;64(6):513–520. doi: 10.1159/000490615
  9. Haran JP, McCormick BA. Aging, frailty, and the microbiome-how dysbiosis influences human aging and disease. Gastroenterology. 2021;160(2):507–523. doi: 10.1053/j.gastro.2020.09.060
  10. Morley JE. Frailty and sarcopenia in elderly. Wien Klin Wochenschr. 2016;128(Suppl. 7):439–445. doi: 10.1007/s00508-016-1087-5
  11. Nikityuk DB, Pogozheva AV, Sharafetdinov KhKh, et al. Standards of clinical nutrition: guidelines. Moscow, 2017. 313 p. (In Russ).
  12. Savina AA, Feyginova SI. Dynamics in incidence of diseases of the circulatory system among adults in the Russian Federation in 2007–2019. Social aspects of population health. 2021;67(2):1. (In Russ). doi: 10.21045/2071-5021-2021-67-2-1
  13. Pogozheva AV. Modern ideas about the nutrition of the elderly. RMJ. 2001;9(13–14):18–20. (In Russ).
  14. Pogozheva AV. Principles of nutrition for the elderly. Clinical Gerontology. 2017;23(11–12):74–83. (In Russ). doi: 10.26347/1607-2499201711-12074-079
  15. Pogozheva AV. Eat, drink, don’t sick. unique principles of gerodietetics and geriatrics - healthy and healthy nutrition in the elderly. Moscow: DeLi; 2021. (In Russ).
  16. Ni Lochlainn M, Cox NJ, Wilson T, et al. Nutrition and Frailty: opportunities for prevention and treatment. Nutrients. 2021;13(7):2349. doi: 10.3390/nu13072349
  17. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet. 2013;381(9868):752–762. doi: 10.1016/S0140-6736(12)62167-9
  18. Gao Q, Hu K, Yan C, et al. Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients. 2021;13(12):4291. doi: 10.3390/nu13124291
  19. Chang SF. Frailty Is a major related factor for at risk of malnutrition in community-dwelling older adults. J Nurs Scholarsh. 2017;49(1):63–72. doi: 10.1111/jnu.12258
  20. Crow RS, Lohman MC, Titus AJ, et al. Association of obesity and frailty in older adults: NHANES 1999–2004. J Nutr Health Aging. 2019;23(2):138–144. doi: 10.1007/s12603-018-1138-x
  21. Ludwig DS, Ebbeling CB. The Carbohydrate-insulin model of obesity: beyond “Calories In, Calories Out”. JAMA Intern Med. 2018;178(8):1098–1103. doi: 10.1001/jamainternmed.2018.2933
  22. Xu L, Zhang J, Shen S, et al. Association Between body composition and frailty in elder inpatients. Clin Interv Aging. 2020;15:313–320. doi: 10.2147/CIA.S243211
  23. Lorenzo-López L, Maseda A, de Labra C, et al. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr. 2017;17(1):108. doi: 10.1186/s12877-017-0496-2
  24. Soysal P, Isik AT, Carvalho AF, et al. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72. doi: 10.1016/j.maturitas.2017.01.006
  25. Capurso C, Bellanti F, Lo Buglio A, Vendemiale G. The mediterranean diet slows down the progression of aging and helps to prevent the onset of frailty: a narrative review. Nutrients. 2019;12(1):35. doi: 10.3390/nu12010035
  26. Lopez-Garcia E, Hagan KA, Fung TT, et al. Mediterranean diet and risk of frailty syndrome among women with type 2 diabetes. Am J Clin Nutr. 2018;107(5):763–771. doi: 10.1093/ajcn/nqy026
  27. Kim D, Park Y. Association between the dietary inflammatory index and risk of frailty in older individuals with poor nutritional status. Nutrients. 2018;10(10):1363. doi: 10.3390/nu10101363
  28. Vicente BM, Lucio Dos Santos Quaresma MV, Maria de Melo C, Lima Ribeiro SM. The dietary inflammatory index (DII®) and its association with cognition, frailty, and risk of disabilities in older adults: A systematic review. Clin Nutr ESPEN. 2020;40:7–16. doi: 10.1016/j.clnesp.2020.10.003
  29. Laclaustra M, Rodriguez-Artalejo F, Guallar-Castillon P, et al. Prospective association between added sugars and frailty in older adults. Am J Clin Nutr. 2018;107(5):772–779. doi: 10.1093/ajcn/nqy028
  30. Wirth MD, Zhao L, Turner-McGrievy GM, Ortaglia A. Associations between fasting duration, timing of first and last meal, and cardiometabolic endpoints in the National Health and Nutrition Examination Survey. Nutrients. 2021;13(8):2686. doi: 10.3390/nu13082686
  31. Mortera RR, Bains Y, Gugliucci A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front Biosci (Landmark Ed). 2019;24(2):186–211. doi: 10.2741/4713
  32. Miao H, Chen K, Yan X, Chen F. Sugar in beverage and the risk of incident dementia, Alzheimer’s Disease and stroke: A prospective cohort study. J Prev Alzheimers Dis. 2021;8(2):188–193. doi: 10.14283/jpad.2020.62
  33. García-Esquinas E, Rahi B, Peres K, et al. Consumption of fruit and vegetables and risk of frailty: a dose-response analysis of 3 prospective cohorts of community-dwelling older adults. Am J Clin Nutr. 2016;104(1):132–142. doi: 10.3945/ajcn.115.125781
  34. Kojima G, Iliffe S, Jivraj S, Walters K. Fruit and vegetable consumption and incident prefrailty and frailty in community-dwelling older people: The English Longitudinal Study of Ageing. Nutrients. 2020;12(12):3882. doi: 10.3390/nu12123882
  35. Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients. 2018;11(1):53. doi: 10.3390/nu11010053
  36. Lana A, Rodriguez-Artalejo F, Lopez-Garcia E. Dairy consumption and risk of frailty in older adults: A prospective cohort study. J Am Geriatr Soc. 2015;63(9):1852–1860. doi: 10.1111/jgs.13626
  37. Monteiro CA, Cannon G, Levy RB, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22(5):936–941. doi: 10.1017/S1368980018003762
  38. Chen X, Zhang Z, Yang H, et al. Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J. 2020;19(1):86. doi: 10.1186/s12937-020-00604-1
  39. Sandoval-Insausti H, Blanco-Rojo R, Graciani A, et al. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J Gerontol A Biol Sci Med Sci. 2020;75(6):1126–1133. doi: 10.1093/gerona/glz140
  40. Coelho-Junior HJ, Marzetti E, Picca A, et al. Protein intake and frailty: A matter of quantity, quality, and timing. Nutrients. 2020;12(10):2915. doi: 10.3390/nu12102915
  41. Liao CD, Lee PH, Hsiao DJ, et al. Effects of protein supplementation combined with exercise intervention on frailty indices, body composition, and physical function in frail older adults. Nutrients. 2018;10(12):1916. doi: 10.3390/nu10121916
  42. Shariatpanahi ZV, Eslamian G, Ardehali SH, Baghestani AR. Effects of early enteral glutamine supplementation on intestinal permeability in critically ill patients. Indian J Crit Care Med. 2019;23(8):356–362. doi: 10.5005/jp-journals-10071-23218
  43. Otsuka R, Tange C, Tomida M, et al. Dietary factors associated with the development of physical frailty in community-dwelling older adults. J Nutr Health Aging. 2019;23(1):89–95. doi: 10.1007/s12603-018-1124-3
  44. Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390(10107):2050–2062. doi: 10.1016/S0140-6736(17)32252-3
  45. Kobayashi S, Suga H, Sasaki S. Diet with a combination of high protein and high total antioxidant capacity is strongly associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr J. 2017;16(1):29. doi: 10.1186/s12937-017-0250-9
  46. Das A, Cumming RG, Naganathan V, et al. Prospective associations between dietary antioxidant intake and frailty in older australian men: the concord health and ageing in men project. J Gerontol A Biol Sci Med Sci. 2020;75(2):348–356. doi: 10.1093/gerona/glz054
  47. Lauretani F, Semba RD, Bandinelli S, et al. Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. Am J Clin Nutr. 2007;86(2):347–352. doi: 10.1093/ajcn/86.2.347
  48. Johansson P, Dahlström Ö, Dahlström U, Alehagen U. Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. J Nutr Health Aging. 2015;19(9):870–877. doi: 10.1007/s12603-015-0509-9
  49. Petermann-Rocha F, Chen M, Gray SR, et al. Factors associated with sarcopenia: A cross-sectional analysis using UK Biobank. Maturitas. 2020;133:60–67. doi: 10.1016/j.maturitas.2020.01.004
  50. Veronese N, Berton L, Carraro S, et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr. 2014;100(3):974–981. doi: 10.3945/ajcn.113.080168
  51. Smith GI, Julliand S, Reeds DN, et al. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015;102(1):115–122. doi: 10.3945/ajcn.114.105833
  52. Marcos-Pérez D, Sánchez-Flores M, Proietti S, et al. Low Vitamin D Levels and Frailty Status in Older Adults: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(8):2286. doi: 10.3390/nu12082286
  53. Zhou J, Huang P, Liu P, et al. Association of vitamin D deficiency and frailty: A systematic review and meta-analysis. Maturitas. 2016;94:70–76. doi: 10.1016/j.maturitas.2016.09.003
  54. Ju SY, Lee JY, Kim DH. Low 25-hydroxyvitamin D levels and the risk of frailty syndrome: a systematic review and dose-response meta-analysis. BMC Geriatr. 2018;18(1):206. doi: 10.1186/s12877-018-0904-2
  55. Bolzetta F, Stubbs B, Noale M, et al. Low-dose vitamin D supplementation and incident frailty in older people: An eight year longitudinal study. Exp Gerontol. 2018;101:1–6. doi: 10.1016/j.exger.2017.11.007
  56. Dedov II, Melnichenko GA, Mokrysheva NG, et al. Draft federal clinical practice guidelines for the diagnosis, treatment, and prevention of vitamin D deficiency. Osteoporosis and Bone Diseases. 2021;24(4):4–26. (In Russ). doi: 10.14341/osteo12937
  57. Cox NJ, Morrison L, Ibrahim K, et al. New horizons in appetite and the anorexia of ageing. Age Ageing. 2020;49(4):526–534. doi: 10.1093/ageing/afaa014
  58. Azzolino D, Passarelli PC, De Angelis P, et al. Poor oral health as a determinant of malnutrition and sarcopenia. Nutrients. 2019;11(12):2898. doi: 10.3390/nu11122898
  59. Ni Lochlainn M, Bowyer RCE, Steves CJ. Dietary protein and muscle in aging people: the potential role of the gut microbiome. Nutrients. 2018;10(7):929. doi: 10.3390/nu10070929
  60. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. doi: 10.1186/s12967-017-1175-y
  61. Rattray NJW, Trivedi DK, Xu Y, et al. Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun. 2019;10(1):5027. doi: 10.1038/s41467-019-12716-2
  62. Buchmann N, Spira D, König M, et al. Frailty and the Metabolic Syndrome — Results of the Berlin Aging Study II (BASE-II). J Frailty Aging. 2019;8(4):169–175. doi: 10.14283/jfa.2019.15
  63. Kong LN, Lyu Q, Yao HY, et al. The prevalence of frailty among community-dwelling older adults with diabetes: A meta-analysis. Int J Nurs Stud. 2021;119:103952. doi: 10.1016/j.ijnurstu.2021.103952
  64. Tamura Y, Omura T, Toyoshima K, Araki A. Nutrition management in older adults with diabetes: A review on the importance of shifting prevention strategies from metabolic syndrome to frailty. Nutrients. 2020;12(11):3367. doi: 10.3390/nu12113367
  65. Muscariello E, Nasti G, Siervo M, et al. Dietary protein intake in sarcopenic obese older women. Clin Interv Aging. 2016;11:133–140. doi: 10.2147/CIA.S96017
  66. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:69. doi: 10.12688/f1000research.20510.1
  67. Qi Y, Goel R, Kim S, et al. Intestinal permeability biomarker zonulin is elevated in healthy aging. J Am Med Dir Assoc. 2017;18(9):810.e1–810.e4. doi: 10.1016/j.jamda.2017.05.018
  68. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi: 10.1038/s41569-018-0064-2
  69. Feart C. Nutrition and frailty: Current knowledge. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109703. doi: 10.1016/j.pnpbp.2019.109703
  70. Nam SY. Obesity-related digestive diseases and their pathophysiology. Gut Liver. 2017;11(3):323–334. doi: 10.5009/gnl15557
  71. Di Ciaula A, Wang DQH, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol. 2018;34(2):71–80. doi: 10.1097/MOG.0000000000000423

Copyright (c) 2022 Martyushev-Poklad A.V., Yankevich D.S., Petrova M.V., Savitskaya N.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies