Том 31, № 2 (2021)

Обложка

Весь выпуск

Технологии и средства технического обслуживания в сельском хозяйстве

Исследование работоспособности зерноуборочных комбайнов в гарантийный период

Комаров В.А., Курашкин М.И.

Аннотация

Введение. Зерноуборочный комбайн в течение года используют не более двух месяцев. Он должен обладать максимальной эксплуатационной надежностью, так как даже непродолжительные простои в период уборочных работ ведут к большим потерям урожая. Целью настоящего исследования является выявление причин отказов
комбайнов при гарантийной эксплуатации.
Материалы и методы. Выявление последствий сбоев и обеспечение непрерывной работы комбайнов основывается на усовершенствованной классификации отказов. В процессе исследования предложены пути решения проблемы простоя комбайнов на основании анализа времени на устранение неисправности. Учитывалась категория тяжести последствий отказов.
Результаты исследования. В результате наблюдений в период с 2018 по 2020 гг. выявлены отказы узлов и систем комбайнов, имеющих низкие показатели надежности в гарантийный период. Большая часть отказов (59,2 %) – у комбайнов российского производства. Из них эксплуатационные отказы составляют 55,9 %, конструктивные – 26,7 % и производственные – 17,4 %. Определены общие закономерности изменения среднего времени на устранение отказов комбайнов. Создана геометрическая модель детали, обеспечивающей безотказную работу комбайнов (вал шнека жатки). Использовался конечно-элементный анализ (ANSYS), позволивший выявить участки, подвергаемые максимальной рабочей нагрузке. Выявлены узлы и детали, выходящие из строя в период гарантийной эксплуатации по причинам, связанным с конструктивно-технологическими недоработками.
Обсуждение и заключение. С целью сокращения времени на  устранение последствий отказов необходимо создание более разветвленной сети предприятий, оказывающих широкую номенклатуру сервисных услуг, совершенствование организации технического сервиса и расширение прямых связей с заводами-изготовителями техники для быстрого реагирования и принятия необходимых конструктивно-технологических решений.

Инженерные технологии и системы. 2021;31(2):188-206
pages 188-206 views

Оценка технического состояния электроуправляемых форсунок дизелей по характеристике топливоподачи

Раков Н.В., Габитов И.И., Неговора А.В., Сафин Ф.Р., Магафуров Р.Ж.

Аннотация

Введение. В настоящее время на станциях техобслуживания и ремонтных предприятиях отсутствуют доступные для широкого использования технологии и оборудование для точной оценки технического состояния форсунок аккумуляторных топливоподающих систем типа Common Rail. Реализованные на практике методы в основном дают обобщенную оценку работоспособности форсунки без выявления конкретного дефекта, что влечет за собой необоснованную замену еще работоспособных деталей электроуправляемых форсунок.

Целью данной статьи является знакомство широкого круга специалистов с новым безмензурочным методом испытания форсунок с электронным управлением на основе оценки характеристик топливоподачи. Он позволяет выявить конкретные неисправности форсунки при безразборном диагностировании.
Материалы и методы. Работа основана на системном анализе заводских методик испытания форсунок, обзоре современных научных публикаций, использовании компьютерного моделирования в специализированных программах, а также экспериментальной проверке полученных результатов.
Результаты исследования. Предложенная авторами методика диагностирования дизельных форсунок с возможностью оценки технического состояния каждого элемента по топливоподаче позволяет существенно повысить информативность протокола проверки и на 24 % снизить трудоемкость ремонта электроуправляемых форсунок.
Обсуждение и заключение. Итогом исследования являются разработанные и апробированные авторами измерительный модуль и методика испытания форсунок дизелей с возможностью оценки технического состояния деталей, что позволяет выявить и устранить конкретные неисправности форсунок без разборки и избежать необоснованной замены исправных элементов при ремонте. Результаты исследования внедрены в центре по ремонту топливной аппаратуры Bosch Diesel Service ООО «Башдизель».

Инженерные технологии и системы. 2021;31(2):207-226
pages 207-226 views

Технологии и средства механизации сельского хозяйства

Модель прогнозирования комплексного негативного воздействия технологий сельхозпроизводства на водные объекты

Субботин И.А., Васильев Э.В.

Аннотация

Введение. Цель исследования – разработка математической модели, позволяющей оценивать и прогнозировать комплексное негативное воздействие на водные объекты технологий сельхозпроизводства. Данная проблема актуальна ввиду необходимости укрупнения сельхозпредприятий. Модель прогнозирования важна для оценки с учетом комплексного влияния машинных технологий сельхозпроизводства и всех биогенных элементов, отрицательно воздействующих на водные объекты.
Материалы и методы. Использован метод логико-лингвистического моделирования Спесивцева – Дроздова, позволяющий формализовать экспертные знания в математическую модель. Были опрошены 4 эксперта, а полученные данные обработаны и подвергнуты регрессионному анализу. Адекватность модели проверена с помощью коэффициента детерминации и критерия Фишера.
Результаты исследования. Сформирована иерархическая система из 6 факторов и 14 подфакторов, включающих как применяемые машинные технологии, так и принимаемые управленческие решения. Получена модель, содержащая полиномиальное уравнение, отражающее влияние факторов на уровень негативного воздействия технологий, и уравнения, определяющие влияние подфакторов на факторы.
Обсуждение и заключение. Полученная модель может быть использована в практических целях для поддержки принятия решений планирования, прогнозировании выбора сценариев модернизации сельхозпредприятий. Уравнения модели позволяют понять значимость факторов и подфакторов, влияющих на уровень негативного воздействия (диффузную нагрузку) на водные объекты. Это позволяет выбирать эффективные пути снижения негативного воздействия путем выбора в качестве объектов наиболее значимых факторов и/или подфакторов.

Инженерные технологии и системы. 2021;31(2):227-240
pages 227-240 views

Информационно-прогнозная модель температурно-влажностного режима коровника

Вторый В.Ф., Вторый С.В., Гордеев В.В.

Аннотация

Введение. Информационно-прогнозное моделирование является эффективным инструментом оптимизации параметров внутреннего климата с целью полного использования потенциала коров. Несоблюдение требований климата коровника может привести к снижению лактационной способности на 10–30 %.

Целью исследования было создание информационно-прогнозной модели формирования внутреннего климата на основе экспериментальных данных.
Материалы и методы. Была разработана 24-часовая система измерения соответствующих климатических переменных с 10-минутным интервалом записи данных. Она включала в себя девять сенсорных блоков, три устройства записи хранения данных и общий блок питания. Замеры проводились в коровнике на 200 голов в Ленинградской области.
Результаты исследования. Согласно результатам летних исследований некоторые участки коровника при высокой относительной влажности воздуха имели температурно-влажностный индекс >75, то есть неблагоприятный для животных. Этот период мог длиться до 18 часов в сутки. В дневное время при индексе >80 внутренняя среда может стать критической и сопровождаться резким снижением продуктивности коров. Получены корреляционные модели температурного режима коровника, и рассчитаны их зависимости от температуры внутри и снаружи помещения и влажности воздуха.
Обсуждение и заключение. Создана информационно-прогнозная модель, описывающая формирование температурно-влажностного режима внутри коровника в зависимости от погодных условий. При постоянном обновлении базы данных в режиме реального времени модель позволяет контролировать температуру и влажность в коровнике и прогнозировать эти переменные на ближайшие несколько дней. Соответствующие данные визуализируются в режиме реального времени на мониторах и информационных панелях для персонала и специалистов, принимающих своевременные управленческие решения по предотвращению критических ситуаций, связанных с перегревом или переохлаждением животных.

Инженерные технологии и системы. 2021;31(2):241-256
pages 241-256 views

Обоснование параметров рыхлителя почвообрабатывающей машины стратификатора

Сыромятников Ю.Н.

Аннотация

Введение. Получение безвредных для организма человека продуктов питания требует отказа от химических средств контроля сорняков при выращивании сельскохозяйственных культур. Почвообрабатывающая машина стратификатор оптимизирует физико-механическое состояние обрабатываемого слоя почвы, при этом сорняки вычесыванием извлекаются из почвы вместе с цельной корневой системой и укладываются на поверхность, где они высушиваются под воздействием климатических факторов. Порядка 30 % от общих затрат энергии в процессе работы машины расходуется на привод ротора, поэтому она неудовлетворительно работает на плотных почвах.
Материалы и методы. Почва рассматривалась как упругопластическая среда. Принималась во внимание модель обобщенного закона Гука и один из вариантов теории пластического течения. Для упрощения вычислений использовались сведения из экспериментальных исследований о положении в пространстве поверхности разрушения почвы. Определялась интенсивность напряжений полипластических деформаций слоя почвы. Для численного решения задачи использовался метод Ритца.
Результаты исследования. В связи с указанными недостатками параметры рыхлителя обоснованы с учетом уменьшения крутящего момента привода ротора. В результате решения задачи методом вариационного исчисления определена геометрическая форма рыхлителя ротора. Энергетические показатели работы секции почвообрабатывающей машины оценивались крутящим моментом привода ротора рыхлительно-сепарирующего устройства. Крутящий момент привода ротора определялся для рыхлителей с ровным, выпуклым, вогнутым и обоснованным в результате проведения теоретических исследований профилем.
Обсуждение и заключение. Обоснованный профиль обеспечивает наилучшие условия для транспортирования почвы в начальный момент вхождения рыхлителя в землю и минимальные затраты энергии на его привод.

Инженерные технологии и системы. 2021;31(2):257-273
pages 257-273 views

Сублимация рыбопродуктов в условиях Арктики при производстве кормов для сельскохозяйственных животных

Сыроватка В.И., Жданова Н.В., Рассказов А.Н., Обухов А.Д., Торопов Д.И.

Аннотация

Введение. В статье рассмотрены биологические ресурсы Арктики, которые целесообразно использовать при производстве рыбной муки для кормления сельскохозяйственных животных. Задачей исследований является обоснование целесообразности применения непрерывно работающей двухкамерной линии сублимационной сушки рыбопродуктов, используя естественное замораживание улова рыбы и дешевый источник тепловой энергии для сушки: этан, пропан, бутан (отходы при очистке природного газа и нефтепродуктов местных предприятий), а также СВЧ-энергию.
Материалы и методы. Предложена непрерывно действующая двухкамерная линия сублимационной установки, камеры которой работают попеременно: одна – на процесс сублимационной сушки, а другая – на загрузку и выгрузку обрабатываемых продуктов. При этом используются естественное замораживание рыбы и тепловая энергия на процесс сублимации (сушки) от сжигания отходов газа. При наличии дешевой электроэнергии целесообразно применять для сушки СВЧ-энергию, которая позволяет сократить цикл сушки, обеспечить равномерность и одновременность высушивания материала до 3–5 % влажности без перестановки противней по высоте тележки.
Результаты исследования. Предложены конструкции двухкамерной линии сублимации крупнокусковых продуктов и сублимационной установки на базе СВЧ-энергии, которая позволяет регулировать температуру сублимации в заданных пределах.
Обсуждение и заключение. Представленные конструктивные решения линии сублимации крупнокусковых продуктов и сублимационной установки с применением СВЧ-энергии необходимы при проектировании оборудования на базе цифровых технологий.

Инженерные технологии и системы. 2021;31(2):274-290
pages 274-290 views

Электротехнологии и электрооборудование в сельском хозяйстве

Описание новой методики приготовления хлебобулочных изделий из пшенично-ржаной муки на закваске

Шелехов И.Ю.

Аннотация

Введение. В статье представлены результаты исследования по применению различных методов термообработки хлебобулочных изделий. Показано, что инфракрасный метод является одним из перспективных при термообработке. Проведенный анализ демонстрирует, что при комбинировании различных способов термообработки у продуктов сохраняются потребительские качества и уменьшается время технологического цикла. Автором предлагается применение метода термического воздействия в индустрии быстрого питания.
Материалы и методы. Предметом исследования является новый способ термической обработки хлебобулочных изделий из пшенично-ржаной муки с использованием инфракрасного излучения. Для исследования был изготовлен нагревательный блок (патент на полезную модель № 199820). Были установлены нагревательные элементы, изготовленные по технологии сеткотрафаретной печати, управление и контроль нагревательными элементами осуществлялся с помощью ПИД-регулятора марки ТРМ 148-Т с интерфейсом RS-485.
Результаты исследования. В статье показано, что с помощью данного метода можно создавать равномерное поле нагрева продукта. Приводятся результаты исследований управления температурными режимами приготовления хлебобулочных изделий. Показано, что время приготовления хлебобулочных изделий сократилось более чем на 25 %, при этом потребительские качества продукта не изменились.
Обсуждение и заключение. Исследования показали, что применение описанного способа термической обработки открывает новые возможности в индустрии быстрого питания и других отраслях народного хозяйства. Результаты показали, что при наборе экспериментальных данных метод можно применить в индивидуальном секторе и осуществить интеллектуализацию процесса приготовления различных продуктов питания.

Инженерные технологии и системы. 2021;31(2):291-303
pages 291-303 views

Машиностроение

Повышение эффективности работы жидкостного подогревателя при предпусковой подготовке двигателя внутреннего сгорания

Самиков Р.Ф., Нигматуллин Ш.Ф., Разяпов М.М., Козеев А.А., Смольянов А.В., Галин Д.А.

Аннотация

Введение. В данной статье объектом исследования является система энергоснабжения предпускового подогревателя.

Цель – оценить возможность использования термоэлектрического генератора для питания жидкостного предпускового подогревателя с оптимизацией проточной части теплообменника термоэлектрического генератора.
Материалы и методы. Предложено использовать термоэлектрический генератор в качестве дополнительного источника энергии для снижения потребления электроэнергии предпусковым подогревателем. В процессе выполнения работы были смоделированы различные конструкции проточной части теплообменника термоэлектрического генератора. Был проведен термический и гидродинамический анализ в программных средах ANSYS Workbench, Solidworks Flow Simulation, по результатам которого определена наиболее эффективная конструкция проточной части теплообменника термоэлектрического генератора.
Результаты исследования. Была собрана экспериментальная установка, и выведена зависимость влияния температурных режимов работы предпускового подогревателя на выходные показатели термоэлектрического генератора.
Обсуждение и заключение. Доказана возможность снижения энергопотребления аккумуляторной батареи автотранспортного средства при тепловой подготовке двигателя внутреннего сгорания путем применения термоэлектрического генератора, адаптированного к системе энергоснабжения жидкостного предпускового подогревателя.

Инженерные технологии и системы. 2021;31(2):304-320
pages 304-320 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».