Methods of preoperative risk screening based on artificial intelligence using medical history and laboratory data

Cover Page

Cite item

Abstract

the article is devoted to the analysis of modern approaches to preoperative risk screening using artificial intelligence algorithms that integrate anamnestic and laboratory data. The relevance of the transition from traditional scoring scales to more accurate and adaptive AI models capable of taking into account a large number of variables and identifying complex patterns in clinical and biochemical information is substantiated. The research examines the principles of predictive model construction, including gradient boosting, XGBoost, and logistic regression with L1 regularization, as well as their interpretability using SHAP. Special attention is paid to substantiating the prognostic value of such factors as the level of C-reactive protein, the number of preoperative consultations, the volume of blood transfused, chronic diseases, gender, age, parameters of drug therapy and laboratory abnormalities that are not included in traditional scales. The work aims to systematize existing techniques, proving the advantage of AI models in a real clinical process. For its implementation, comparative analysis and structuring of scientific sources were used. In conclusion, it is shown that AI screening transforms the practice of risk assessment by offering personalized and reproducible solutions. The article will be useful for specialists in the field of surgery, anesthesiology and medical informatics.

About the authors

O. V Dobrenko

Siegen Medical Center, Germany

References

  1. Лапидус Л.В., Токарева О.М. Разработка таксономии решений на основе технологий искусственного интеллекта в практике оказания медицинских услуг // Экономика и управление. 2024. № 7. С. 819 – 831. URL: https://cyberleninka.ru/article/n/razrabotka-taksonomii-resheniy-na-osnove-tehnologiy-iskusstvennogo-intellekta-v-praktike-okazaniya-meditsinskih-uslug (дата обращения: 28.04.2025)
  2. Переверзев В.С., Казьмин А.И., Сажнев М.Л., Пантелеев А.А., Колесов С.В. Искусственный интеллект для прогнозирования различных состояний в вертебрологии: систематический обзор // Гений ортопедии. 2021. № 6. С. 813 – 818. URL: https://cyberleninka.ru/article/n/iskusstvennyy-intellekt-dlya-prognozirovaniya-razlichnyh-sostoyaniy-v-vertebrologii-sistematicheskiy-obzor (дата обращения: 29.04.2025)
  3. Пранович А.А., Исмаилов А.К., Карельская Н.А. и др. Искусственный интеллект в диагностике и лечении мочекаменной болезни // Журнал телемедицины и электронного здравоохранения. 2022. № 1. С. 42 – 57. URL: https://cyberleninka.ru/article/n/iskusstvennyy-intellekt-v-diagnostike-i-lechenii-mochekamennoy-bolezni (дата обращения: 27.04.2025)
  4. Шайлиева Ш.Л., Мамчуева Д.Х., Вишневская А.П. и др. Возможности применения искусственного интеллекта в современной гинекологии // Акушерство, гинекология и репродукция. 2024. Т. 18. № 4. С. 563 – 580. DOI: https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.511
  5. Arina P., Kaczorek M.R., Hofmaenner D.A. et al. Prediction of Complications and Prognostication in Perioperative Medicine: A Systematic Review and PROBAST Assessment of Machine Learning Tools // Anesthesiology. 2024. Vol. 140. No. 1. P. 85 – 101. doi: 10.1097/ALN.0000000000004764
  6. Corey K. M., Kashyap S., Lorenzi E. et al. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study // PLOS Medicine. 2018. Vol. 15. No. 11. P. e1002701. DOI: https://doi.org/10.1371/journal.pmed.1002701
  7. Grae?ner M., Jungwirth B., Frank E. et al. Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data // Scientific Reports. 2023. Vol. 13. P. 7128. DOI: https://doi.org/10.1038/s41598-023-33981-8
  8. Li Y.Y., Wang J.J., Huang S.H. et al. Implementation of a machine learning application in preoperative risk assessment for hip repair surgery // BMC Anesthesiology. 2022. Vol. 22. P. 116. DOI: https://doi.org/10.1186/s12871-022-01648-y
  9. Mahajan A., Esper S., Oo T. H. et al. Development and Validation of a Machine Learning Model to Identify Patients Before Surgery at High Risk for Postoperative Adverse Events // JAMA Network Open. 2023. Vol. 6. No. 7. P. 85. doi: 10.1001/jamanetworkopen.2023.22285
  10. Yu Q., Fu M., Hou Z. et al. Elucidating predictors of preoperative acute heart failure in older people with hip fractures through machine learning and SHAP analysis: a retrospective cohort study // BMC Geriatrics. 2025. Vol. 25. P. 268. DOI: https://doi.org/10.1186/s12877-025-05920-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).