Study of temperature and salinity effect on encapsulated surfactants ability to alter wettability and decrease interfacial tension


Cite item

Full Text

Abstract

in recent decades, the task of increasing the oil recovery factor from productive formations has not lost its relevance. Today, there is a rapidly growing interest in the use of chemical methods to increase oil recovery to enhance production, in particular, using surfactants. To overcome the problem of high adsorption, which prevents the widespread introduction of surfactant flooding in carbonate formations, it is proposed to use the technology of encapsulating surfactants in a solid shell. Thus, the active substance can cover a large part of the reservoir, and therefore more oil can be extracted by injecting surfactants. In this work, the influence of typical reservoir conditions (high temperature and salinity) on the main properties of the dispersions of encapsulated surfactants, namely, a decrease in interfacial tension and a change in wettability, was studied. It is shown that the application of the encapsulation method preserves the necessary properties of surfactants, at which low interfacial tension is observed, and the surface of the carbonate rock becomes more hydrophilic.

About the authors

A. Yu Chekalov

Skolkovo Institute of Science and Technology

A. A Ivanova

Skolkovo Institute of Science and Technology

A. N Cheremisin

Skolkovo Institute of Science and Technology

D. N Khmelenin

National Research Center “Kurchatov Institute”

A. S Sokolov

Skolkovo Institute of Science and Technology

References

  1. Lohan M.A., Verma M., Gunjan M., Saini N. Application of Surfactant in Textile // Industry: An Overview. 2024. Vol. 5. № 5. P. 55 – 61.
  2. Pedro R., Walters K.A. Surfactants in cosmetic products // Cosmetic Formulation. 2019. P. 129 – 162.
  3. Kralova I., Sjöblom J. Surfactants used in food industry: a review // Journal of Dispersion Science and Technology 2009. Vol. 30. № 9. P. 1363 – 1383.
  4. Yao Y., Wei M., Kang W. A review of wettability alteration using surfactants in carbonate reservoirs // Advances in Colloid and Interface Science. 2021. Vol. 294. P. 1 – 25.
  5. Pan F., Zhang Z., Zhang X., Davarpanah A. Impact of anionic and cationic surfactants interfacial tension on the oil recovery enhancement // Powder Technology. 2020. Vol. 373. P. 93 – 98.
  6. Dang C.T., Chen Z., Nguyen N.T., Bae W., Phung T.H. Development of isotherm polymer/surfactant adsorption models in chemical flooding // SPE Asia Pacific Oil and Gas Conference and Exhibition. 2011. SPE-147872. P. 1 – 10.
  7. Kamal M.S., Hussein I.A., Sultan A.S. Review on surfactant flooding: phase behavior, retention, IFT, and field applications // Energy & Fuels 2017. Vol. 31. № 8. P. 7701 – 7720.
  8. Azam M.R., Tan I.M., Ismail L., Mushtaq M., Nadeem M., Sagir M. Kinetics and equilibria of synthesized anionic surfactant onto berea sandstone // Journal of Dispersion Science and Technology. 2014. Vol. 35. № 2. P. 223 – 230.
  9. Kamal M.S., Hussain S.M.S., Fogang L.T. A zwitterionic surfactant bearing unsaturated tail for enhanced oil recovery in high‐temperature high‐salinity reservoirs // Journal of Surfactants and Detergents. 2018. Vol. 21. № 1. P. 165 – 174.
  10. Bello A., Ivanova A., Bakulin D., Yunusov T., Cheremisin A. A Static and Dynamic Analysis of Nonionic-based Binary Surfactant Systems for Adsorption Mitigation in a Carbonate Reservoir with High Salinity // Journal of Molecular Liquids. 2024. P. 125 – 141.
  11. Hanamertani A.S., Pilus R.M., Idris A.K., Irawan S., Tan I.M. Ionic liquids as a potential additive for reducing surfactant adsorption onto crushed Berea sandstone // Journal of Petroleum Science and Engineering. 2018. Vol. 162. P. 480 – 490.
  12. Belhaj A.F., Elraies K.A., Mahmood S.M., Zulkifli N.N., Akbari S., Hussien O.S. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review // Journal of Petroleum Exploration and Production Technology. 2020. Vol. 10. P. 125 – 137.
  13. Rosen M.J., Kunjappu J.T. Surfactants and interfacial phenomena // John Wiley & Sons. 2012. P. 1 – 576.
  14. Wang Y., Hou J., Qi Z., Han M. Investigation of sacrificial agents for reducing surfactant adsorption on carbonates // Petroleum Science and Technology. 2022. Vol. 40. № 22. P. 2755 – 2772.
  15. Mushtaq M., Isa M, Tan, Ismail L., Nadeem M., Sagir M., Azam R. Influence of PZC (Point of Zero Charge) on the Static Adsorption of Anionic Surfactants on a Malaysian Sandstone // Journal of Dispersion Science and Technology. 2014. Vol. 35. № 3. P. 343 – 349.
  16. Koparal G.B., Sharma H., Liyanage P.J., Panthi K.K., Mohanty K. Adsorption of anionic surfactants in sandstones: Impact of sacrificial agents // SPE Western Regional Meeting. 2021.
  17. Scerbacova A., Ivanova A., Grishin P., Cheremisin A., Tokareva E., Tkachev I., Sansiev G., Fedorchenko G., Afanasiev I. Application of alkalis, polyelectrolytes, and nanoparticles for reducing adsorption loss of novel anionic surfactant in carbonate rocks at high salinity and temperature conditions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. Vol. 653.
  18. Manzari M.T., Shamay Y., Kiguchi H., Rosen N., Scaltriti M., Heller D. A. Targeted drug delivery strategies for precision medicines // Nature Reviews Materials. 2021. Vol. 6. №4. P. 351 – 370.
  19. Ivanova A.A., Kozyreva Z.V., Chekalov A.Y., Proshin P.I., Abdurashitov A.S., Bello A.S., Markovic S., Sukhorukov G.B., Cheremisin A.N. Development and characterization of nanostructured surfactant compositions with prolonged action and stimuli-responsible physicochemical properties // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024. Vol. 687. P. 1 – 32.
  20. Kittisrisawai S., Romero-Zerón L.B. Complexation of surfactant/β-cyclodextrin to inhibit surfactant adsorption onto sand, kaolin, and shale for applications in enhanced oil recovery processes. Part II: dynamic adsorption analysis // Journal of Surfactants and Detergents. 2015. Vol. 18. P 783 – 795.
  21. Alsmaeil A.W., Hammami M.A., Enotiadis A., Kanj M.Y., Giannelis E P. Encapsulation of an anionic surfactant into hollow spherical nanosized capsules: Size control, slow release, and potential use for enhanced oil recovery applications and environmental remediation // ACS Omega. 2021. Vol. 6. № 8. P. 5689 – 5697.
  22. Xu Z.-X., Li S.-Y., Li B.-F., Chen D.-Q., Liu Z.-Y., Li Z.-M. A review of development methods and EOR technologies for carbonate reservoirs // Petroleum Science. 2020. Vol. 17. P. 990 – 1013.
  23. Kim S.-N., So, W.-J., Choi J.-S., Ahn W.-S. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis // Microporous and Mesoporous Materials. 2008. Vol. 115. № 3. P. 497 – 503.
  24. Ahmadali T., Gonzalez M.V., Harwell J.H., Scamehorn J.F. Reducing surfactant adsorption in carbonate reservoirs // SPE Reservoir Engineering. 1993. T. 8. № 02. P. 117 – 122.
  25. Wasan D., Nikolov A., Kondiparty K. The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure // Current Opinion in Colloid & Interface Science. 2011. Vol. 16. № 4. P. 344 – 349.
  26. Lashkarbolooki M., Riazi M., Ayatollahi S., Hezave A.Z. Synergy effects of ions, resin, and asphaltene on interfacial tension of acidic crude oil and low–high salinity brines // Fuel. 2016. Vol. 165. P. 75 – 85.
  27. Bind S., Sharma H. Effect of Brine and Organic Acids on Initial Wettability of Carbonate Rocks // Energy Fuels. 2022. Vol. 36. № 17. P. 10123 – 10132

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).