Effective methods of concentration and purification of omega-3 polyunsaturated fatty acids: a systematic review and prospects


Cite item

Full Text

Abstract

the article is devoted to methods of concentrating and purifying omega-3 polyunsaturated fatty acids (PUFAs). The text discusses methods such as transesterification, urea complexation, chromatographic methods, low-temperature crystallization, supercritical fluid extraction, molecular distillation, and iodolactonization. The aim of the research is to systematize literature data to identify the most effective methods for obtaining purified, concentrated omega-3 PUFAs. The methods include transesterification for converting triglycerides into ethyl esters, urea complexation for separating fatty acids, chromatographic methods for high product purity, low-temperature crystallization for simplicity and cost-effectiveness, supercritical fluid extraction for environmental cleanliness and efficiency, molecular distillation for high selectivity, and iodolactonization for prospective separation of omega-3 acids. The article discusses the advantages and disadvantages of methods for concentrating omega-3 PUFAs. It also considers the prospects for developing effective and economical methods of enriching omega-3 fatty acids to reduce costs and meet future demand for highly purified products.

About the authors

I. A Zhuravlev

Far Eastern Federal University

A. F Bocharnikov

Far Eastern Federal University

E. V Maskin

Far Eastern Federal University

D. D Solodiy

Far Eastern Federal University

P. A Shinkaruk

Far Eastern Federal University

References

  1. Lund J., Rustan A.C. Fatty acids: Structures and properties // eLS. John Wiley & Sons, Ltd, 2020. P. 283 – 292.
  2. Puri M., Thyagarajan T., Gupta A., Barrow C.J. Omega-3 Fatty Acids Produced from Microalgae // Springer Handbook of Marine Biotechnology / ed. S.-K. Kim. Berlin, Heidelberg: Springer, 2015. P. 1043 – 1057. URL: https://doi.org/10.1007/978-3-642-53971-8_45 (date accessed: 15.04.2024)
  3. Mori T.A. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease // Fitoterapia. 2017. Vol. 123. P. 51 – 58. doi: 10.1016/j.fitote.2017.09.015
  4. Shirai N., Higuchi T., Suzuki H. Analysis of lipid classes and the fatty acid composition of the salted fish roe food products, Ikura, Tarako, Tobiko and Kazunoko // Food Chemistry. 2006. Vol. 94. № 1. P. 61 – 67. doi: 10.1016/j.foodchem.2004.10.050
  5. Oliveira A.C., Bechtel P.J. M. Lipid Composition of Alaska Pink Salmon (Oncorhynchus gorbuscha) and Alaska Walleye Pollock (Theragra chalcogramma) Byproducts. doi: 10.1300/J030v14n01_07 // Journal of Aquatic Food Product Technology. 2005. URL: https://www.tandfonline.com/doi/abs/10.1300/J030v14n01_07 (дата обращения: 05.7.2024)
  6. Fialkow J. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products. doi: 10.1007/s40256-016-0170-7 // American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions. 2016. Vol. 16. № 4. P. 229 – 239.
  7. Sijtsma L., M.E. de Swaaf Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid // Applied Microbiology and Biotechnology. 2004. Vol. 64. № 2. P. 146 – 153. doi: 10.1007/s00253-003-1525-y
  8. Bjelková M., Nôžková J., Fatrcová-Šramková K., Tejklová E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunsaturated fatty acids // Chemical Papers. 2012. Vol. 66. № 10. P. 972 – 976. doi: 10.2478/s11696-012-0209-4
  9. Cholewski M., Tomczykowa M., Tomczyk M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. doi: 10.3390/nu10111662 // Nutrients. 2018. Vol. 10. № 11. P. 1662.
  10. Whelan J., Hardy R., Wilkes R.S., Valentin H.E. Sustainable Production of Omega-3 Fatty Acids // Convergence of Food Security, Energy Security and Sustainable Agriculture / eds. D. D. Songstad [et al.]. Berlin, Heidelberg: Springer, 2014. P. 129 – 169. URL: https://doi.org/10.1007/978-3-642-55262-5_7 (date accessed: 05.07.2024)
  11. Knight H.B., Witnauer L.P., Coleman J.E., Noble W.R.Jr., Swern D. Dissociation temperatures of urea complexes of long-chain fatty acids, esters, and alcohols // Anal. Chem. 1952. Vol. 24. P. 1331 – 1334.
  12. Тютюнников Б.Н. Химия жиров: учебник для студентов высш. учеб. заведений по специальностям пищевой пром-сти. 2-е изд., перераб. и доп. Москва: Пищ. пром-сть, 1974. 446 с.
  13. Magallanes L.M., Tarditto L.V., Grosso N.R. Highly concentrated omega-3 fatty acid ethyl esters by urea complexation and molecular distillation // Journal of the Science of Food and Agriculture. 2019. Vol. 99. № 2. P. 877 – 884. doi: 10.1002/jsfa.9258
  14. Lin W., Wu F.W., Yue L. et al. Combination of Urea Complexation and Molecular Distillation to Purify DHA and EPA from Sardine Oil Ethyl Esters. URL: https://aocs.onlinelibrary.wiley.com/doi/10.1007/s11746-013-2402-1 (date accessed: 05.07.2024) doi: 10.1007/s11746-013-2402-1
  15. Phadtare I., Vaidya H., Hawboldt K., Cheema S.K. Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes // Marine Drugs. 2021. Vol. 19. № 5. P. 259. doi: 10.3390/md19050259
  16. Dillon J.T., Aponte J.C., Tarozo R., Huang Y. 1. Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography // Journal of Chromatography A. 2013. Vol. 1312. P. 18 – 25. doi: 10.1016/j.chroma.2013.08.064
  17. Oh C.-E., Kim G.-J., Park S.-J. et al. Purification of high purity docosahexaenoic acid from Schizochytrium sp. SH103 using preparative-scale HPLC // Applied Biological Chemistry. 2020. Vol. 63. № 1. P. 56. doi: 10.1186/s13765-020-00542-w
  18. Wei B., Wang S.Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography // Journal of Chromatography A. 2020. Vol. 1625. P. 461326. doi: 10.1016/j.chroma.2020.461326
  19. Bonilla J.R., Hoyos Concha J.L. Methods of extraction, refining and concentration of fish oil as a source of omega-3 fatty acid. Ciencia Y Tecnología Agropecuaria. 2018. Vol. 19. № 3. P. 621 – 644. doi: 10.21930/rcta.vol19_num2_art:684
  20. Bárcenas-Pérez D., Lukeš M., Hrouzek P. A biorefinery approach to obtain docosahexaenoic acid and docosapentaenoic acid n-6 from Schizochytrium using high performance countercurrent chromatography // Algal Research. 2021. Vol. 55. P. 102241. doi: 10.1016/j.algal.2021.102241
  21. Lei Q., Ba S., Zhang H. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification // Food Chemistry. 2016. Vol. 199. P. 364 – 371. doi: 10.1016/j.foodchem.2015.12.005
  22. Vázquez L., Akoh C.C. Enrichment of stearidonic acid in modified soybean oil by low temperature crystallisation // Food Chemistry. 2012. Vol. 130. № 1. P. 147 – 155. doi: 10.1016/j.foodchem.2011.07.022
  23. Namal Senanayake S.P.J. 17 – Methods of concentration and purification of omega-3 fatty acids // Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries: Woodhead Publishing Series in Food Science, Technology and Nutrition / ed. S.S. H. Rizvi. Woodhead Publishing, 2013. P. 483 – 505. URL: https://www.sciencedirect.com/science/article/pii/B9781845696450500177 (дата обращения: 05.07.2024)
  24. Senanayake S.N. Methods of concentration and purification of omega-3 fatty acids // Separation, extraction and concentration processes in the food, beverage and nutraceutical industries – Elsevier, 2013. P. 483 – 505.
  25. Lei Q., Ba S., Zhang H. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification // Food Chemistry. 2016. Vol. 199. P. 364 – 371. doi: 10.1016/j.foodchem.2015.12.005
  26. Chen T.-C., Ju Y.-H. Polyunsaturated fatty acid concentrates from borage and linseed oil fatty acids // Journal of the American Oil Chemists’ Society. 2001. Vol. 78. № 5. P. 485 – 488. doi: 10.1007/s11746-001-0290-3
  27. Brunner G. Supercritical fluids: technology and application to food processing: IV Iberoamerican Congress of Food Engineering (CIBIA IV) // Journal of Food Engineering. 2005. Vol. 67. № 1. P. 21 – 33. doi: 10.1016/j.jfoodeng.2004.05.060
  28. Mishra V.K., Temelli F., Ooraikul B. Extraction and purification of ω-3 fatty acids with an emphasis on supercritical fluid extraction – A review // food research international. 1993. Vol. 26. № 3. P. 217 – 226.
  29. Wanasundara U.N., Wanasundara J., Shahidi F. Omega-3 fatty acid concentrates: a review of production technologies // Seafoods – quality, technology and nutraceutical applications. 2002. P. 157 – 174.
  30. Nilsson W.B., Gauglitz Jr. E.J., Hudson J.K. 1. Fractionation of menhaden oil ethyl esters using supercritical fluid CO2 // Journal of the American Oil Chemists’ Society. 1988. Vol. 65. № 1. P. 109 – 117. DOI: https://doi.org/10.1007/BF02542560
  31. Létisse M., Rozières M., Hiol A.Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier: I. Optimization of extraction conditions // The Journal of Supercritical Fluids. 2006. Vol. 38. № 1. P. 27 – 36. doi: 10.1016/j.supflu.2005.11.013
  32. Ferdosh S., Sarker M.Z.I., Rahman N.N.N.A. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology // Korean Journal of Chemical Engineering. 2013. Vol. 30. № 7. P. 1466 –1472. doi: 10.1007/s11814-013-0070-3
  33. Ahmed R., Haq M., Cho Y.-J., Chun B.-S. Quality evaluation of oil recovered from by-products of bigeye tuna using supercritical carbon dioxide extraction // Turkish Journal of Fisheries and Aquatic Sciences. 2017. Vol. 17. № 4. P. 663 – 672.
  34. Rubio-Rodríguez N., de Diego S.M., Beltrán S. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis – Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality // The Journal of Supercritical Fluids. 2008. Vol. 47. № 2. P. 215 – 226. doi: 10.1016/j.supflu.2008.07.007
  35. Alkio M., Gonzalez C., Jäntti M., Aaltonen O.Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography // Journal of the American Oil Chemists’ Society. 2000. Vol. 77. № 3. P. 315 – 321. doi: 10.1007/s11746-000-0051-3
  36. Davarnejad R. et al. Extraction of fish oil by fractionation through supercritical carbon dioxide // Journal of Chemical & Engineering Data. 2008. Vol. 53. № 9. P. 2128 – 2132.
  37. Magallanes L.M. et al. Highly concentrated omega‐3 fatty acid ethyl esters by urea complexation and molecular distillation // Journal of the Science of Food and Agriculture. 2019. Vol. 99. № 2. P. 877 – 884.
  38. Latyshev N.A., Ermolenko E.V., Kasyanov S.P. Concentration and purification of polyunsaturated fatty acids from squid liver processing wastes // European Journal of Lipid Science and Technology. 2014. Vol. 116. № 11. P. 1608 – 1613. doi: 10.1002/ejlt.201400083

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).